4灯笼文章主旨这篇文章抒写了作者关于灯笼的一些记忆,从不同方面表达了灯笼对于他乃至民族的重要意义,抒发了作者的爱国情怀。结构图示重难解读“形散而神不散”(“形散神聚”)是散1社戏文章主旨本文写了“我”和小伙伴们夜航到赵庄看社戏的生活经历,刻画了一群农家少年的形象,表现了劳动人民纯朴善良、友爱无私的美
同步达标月考卷七年级英语第六次其中七年级下册第一单元到第六Tag内容描述:
1、第一单元同步作文指导新闻写作一、文题展示 小试牛刀你所在的班级、学校,或者你居住的社区、村镇、县市,最近发生了什么特别的或者有意思的事情?尽可能多方调查、采访,采集相关信息,写一则消息。不少于500字。【思路点拨】1审题:注意题目限定了文体消息,也限定了选材 的范围你所在的班级、学校,或者你居住的社区、村镇、县市,要从这几个方面来思考选材。2选材:可以选择班上或学校近期开展的各类活动,如体育活动、科学探究活动、文艺会演活动等;社区、村镇等开展的各种特别的或有意义的活动等。3写法:按照消息的基本结构布局谋。
2、函数的表示方法一、教学目标1、了解表示函数关系的三种主要方法.2、掌握在已知函数表达式的情况下,已知自变量求函数值或已知函数值求自变量.3、会根据列表或图象解决一些实际问题.二、课时安排:1 课时.三、教学重点:表示函数关系的三种主要方法.四、教学难点:在已知函数表达式的情况下,已知自变量求函数值或已知函数值求自变量.五、教学过程(一)导入新课 在前面,我们曾用 s=80t,y=3x2-2x+4, ,来表示函数关系,其中:t,x,都表示231y自变量;s,y, 都表示因变量.那么这些表示函数的式子有什么共同特征?函数还有其它的表示方。
3、函数图象的画法一、教学目标1、学会用列表、描点、连线画函数图象2、学会观察、分析函数图象信息3、提高识图能力、分析函数图象信息能力4、体会数形结合思想,并利用它解决问题,提高解决问题能力二、课时安排:1 课时.三、教学重点:用列表、描点、连线画函数图象四、教学难点:体会数形结合思想,并利用它解决问题,提高解决问题能力五、教学过程(一)导入新课 函 数图象是坐标平面上以自变量的值为横坐标、以对应的函数值 为纵坐标的点组成的曲线,函数象直观地反映了变量之间的对应关系和变化规律那么,怎样画一个函数的图象呢? 下。
4、三角形中位线定理知识与技能1.掌握三角形中位线的定义和三角形中位线定理2.学会证明中位线定理 过程与方法 经历三角形中位线定理的探索过程,发展学生的合情推理意识和表述能力。教学目标 情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵。教学重点:理解和掌握三角形中位线定理的证明过程 教学难点:如何对图形拼接,变为熟知的图形进行证明。教学方法:采用学生自主探索和合作学习的教学方法教学用具:多媒体教学过程 师生活动 设计意图复习引入新课讲解一、复习引入:有一块三角形土地,想种植四种。
5、函数一、教学目标1.了 解变量与常量的意义;2.体会运动变化过程中的数量变化 3.会用含一个变量的代数式表示另一个变量二、课时安排:1 课时.三、教学重点:变量与常量.四、教学难点:对变量的判断.五、教学过程(一)导入新课 世界上的万物都在不停地发展着、变化着,在这些发展和变化的过程中,存在着各式各样相关联的量.例如,从家走向学校,在商店里购 物,在操场 上进行百米赛跑,飞机从北京飞往上海在这些活动中存在着很多变化着的量.这些量在变化中有什么规律?有什么相依关系?用什么方 法来反映这些量的变化规律和它们之间的相依。
6、一元二次方程的解 法知识与技能 1.使学生初步掌握用直接开平方法解一元二次方程.过程与方法 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题教学情感态度与价值观提出问题,列出缺一次项的一元二次方程 ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0 型的一元二次方程教学重点:运用开平方法解形如(x+m)2=n(n0)的方程;领会降次转化的数学思想教学难点:通过根据平方根的意义解形如 x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程教学方法:启发引导、讲练结合教学用。
7、多边形一、教学目标1、会推导出多边形内角和、外角和计算公式.2、掌握多边形的内角和与多边形的外角和的计算公式.3、能灵活应用内角和与外角和的知识解决一些较简单的问题.二、 课时安排:1 课时.三、教学重点:多边形内角和、外角和计算公式.四、教学难点:灵活应用内角和与外角和的知识解决一些较简单的问题. 五、教学 过程(一)导入新课 不难发现,四边形的一条对角线把四边形分割成为两个三角形,如图(1).由于三角形内角和等于180,所以可知,四边形的内角和是 360.把四边形分割成为三角形,你还有其他办法吗?把它画在图图(2) 。
8、一次函数的图象一、教学目标1.通过实践了解一次函数的图象是一条直线.2.会 画出正比例函数、一次函数的图象.3.掌握用待定系数法求函数的表达式.二、课时安排:1 课时.三、教学重点:会画出正比例函数、一次函数的图象.四、教学难点:用待定系数法求函数的表达式.五、教学过程(一)导入新课 我们知道,y=2x 的图象是一 条直线,那么任何一个直线一次函数的图象也是一条吗?下面我们学习一次函数的图象.(二)讲授新课实践:1、在平面直角坐标系中分别作出下列函数的图象:(1)y=-x; (2)y=-2x+3; (3)y=2x-3.2、观察所得的图象,你认为一次。
9、 DCBA列方程解应用题知识与技能学会列一元二次方程解有关面积、体积方面的应用问题;过程与方法 进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识教学目标 情感态度与价值观理解数学源于实践又服务于实践的观点教学重点:列一元二次方程解面积、体积方面应用题;教学难点:找等量关系教学方法:启发引导、讲练结合教学用具:练习册教学过程 师生活动 设计意图、设置问题情境合作探究 得出新知:复习引入:1、初一我们学习过列一元一次方程和列二元一次方程组解应用题,列方程解应用题的一般步骤是怎。
10、频数分布表与频数分布图知识与技能:1.了解数据分组整理的统计含义,会根据指定的分组方法对数据分组整理;2.理解频数与 频率的统计含义,掌握频率的计 算方法;3.了解频数分布的意义和作用,会列频数分布表,会画频数分布直方图和频数折线图,4.能从 频数分布表和频数分布图中观察数据分布特征,解决有关 实际问题.过程与方法:1.通过对收集的数据进行分组整理,制作图表的过程,体会对频数进行分段统计可以从总体上把握数据的 分布情况,初步感知实际生活中许多数据的分布都呈现 出“中间高,两边低”(正态分布)的特点2. 通过统计实践活动,了解统。
11、平行四边形和特殊的平行四边形一、教学目标1.了解平行四边形、矩形、菱形、正方形的概念 2.掌握平行四边形、矩 形、菱形、正方形四者之间的关系.3.能灵活运用概念解决问题.二、课时安排:1 课时.三、教学重点:平行四边形、矩形、菱形、正方形的概念四、教学难点:灵活运用概念解决问题.五、教学过程(一)导入新课 平行四边形是随处可见的图形,如图 15-12 中的篱笆、道闸、衣帽架等,都具有平行四边形的形象.下面我们学习平行四边形和特殊的平行四边形.(二)讲授新课两组对边分别平行的四边形叫做平行四边形. 平行四边形是特殊的四边形。
12、2.2切线长定理同步提升练习题一、选择题1下列说法:三点确定一个圆;垂直于弦的直径平分弦;三角形的内心到三条边的距离相等;圆的切线垂直于经过切点的半径其中正确的个数是( )A、0 B、2 C、3 D、42如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A、点(0,3) B、点(2,3) C、点(5,1) D、点(6,1)3已知O的半径是4,P是O外的一点,且PO8,从点P引O的两条切线,切点分别是A,B,则AB0A4 B4 C4 D2 4如图,AB,CD分别为O1,O2的弦,AC,BD为两圆的公切线且交于点P.若PC2,CD3。
13、2.2切线长定理一、选择题1如图K491,PA,PB分别切O于点A,B,E是O上一点,且AEB60,则P的度数为()A45 B50 C55 D60图K4912一个钢管放在V形架内,图K492是其截面图,O为钢管的圆心如果钢管的半径为25 cm,MPN60,那么OP的长为()图K492A50 cm B25 cm C. cm D50 cm3如图K493,PA,PB是O的切线,切点分别是A,B.若APB60,PA4,则O的半径为()A4 B. C. D3图K4934如图K494,PA,PB分别切O于点A,B,AC是O的直径,连结AB,BC,OP,则与PAB相等的角(不包括PAB本身)有()图K494A1个 B2个 C3个 D4个52017无锡如图K495,菱形。
14、1.3解直角三角形(一)一、选择题(共5小题)1、在直角坐标系xOy中,点P(4,y)在第一象限内,且OP与x轴正半轴的夹角为60,则y的值是()A、 B、C、8 D、22、如图,平面直角坐标系中,直线AB与x轴的夹角为60,且点A的坐标为(2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A、B、C、D、3、如图,已知OA=6,AOB=30,则经过点A的反比例函数的解析式为()A、 B、C、 D、4、如图,已知在矩形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点若sinAEH=,AE=5,则四边形EFGH的面积是()A、240 B、60C、120 D、1695、如图,点C在线段AB上。
15、2.2 切线长定理 同步练习一、单选题1、以下命题正确的是()A、圆的切线一定垂直于半径;B、圆的内接平行四边形一定是正方形;C、直角三角形的外心一定也是它的内心;D、任何一个三角形的内心一定在这个三角形内2、下列说法: 三点确定一个圆;垂直于弦的直径平分弦;三角形的内心到三条边的距离相等;圆的切线垂直于经过切点的半径其中正确的个数是( ) A、0B、2C、3D、43、如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE以下结论:DEOF;AB+CD=BC;PB=PF;AD2=4ABDC其中正确的是()A、B。
16、1.3解直角三角形(三)一、选择题(共5小题)1、如图所示,渔船在A处看到灯塔C在北偏东60方向上,渔船正向东方向航行了12海里到达B处,在B处看到灯塔C在正北方向上,这时渔船与灯塔C的距离是()A、12海里 B、6海里C、6海里 D、4海里2、如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得ACB=,那么AB等于()2A、msin米 B、mtan米C、mcos米 D、米3、如图,小明要测量河内小岛B到河边公路l的距离,在A点测得BAD=30,在C点测得BCD=60,又测得AC=50米,则小岛B到公路l的距离为()米A、25 B。
17、1.3 解直角三角形(二)一、选择题(共5小题)1、身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m100m95m90m线与地面夹角30454560A、甲 B、乙C、丙 D、丁2、如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为,那么滑梯长l为()A、 B、C、 D、hsin3、河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是()A、5米 B、10米C、15米 。
18、1社戏文章主旨本文写了“我”和小伙伴们夜航到赵庄看社戏的生活经历,刻画了一群农家少年的形象,表现了劳动人民纯朴善良、友爱无私的美好品德,表达了作者对劳动人民的深厚感情和对美好生活的向往。结构图示考点提炼人物描写方法及其作用问题从描写的角度赏析“母亲送出来吩咐要小心的时候,我们已经点开船,在桥石上一磕,退后几尺,即又上前出了桥”一句。(对应训练见第8题)点拨 解答此类题目,可按以下步骤作答:判断所用的人物描写方法,人物描写方法包括外貌描写、动作描写、语言描写、神态描写、心理描写等。分析此描写方法的作用。
19、4灯笼文章主旨这篇文章抒写了作者关于灯笼的一些记忆,从不同方面表达了灯笼对于他乃至民族的重要意义,抒发了作者的爱国情怀。结构图示重难解读“形散而神不散”(“形散神聚”)是散文的重要特点。所谓“形散”,主要指散文的取材十分广泛自由,不受时间和空间的限制,表现方法不拘一格,组织材料、结构成篇也比较自由。所谓“神不散”,主要是说其要表达的中心思想明确而集中。请结合文章内容分析本文“形散神聚”的特点。本文的“形散”,体现在所选材料较为广泛,既有孩提时代的生活经历,又有年纪稍长时夜晚接祖父和上灯学的事例;。