数学专题

重难专题解读第二部分专题一数学思想方法1数学思想方法是指对数学知识和方法形成的规律性认识,是解决数学问题的根本策略,是沟通基础知识与能力的桥梁中考常用到的数学思想方法有整体思想、转第二部分专题一题型四1已知一次函数ykxb的图象与正比例函数y2x的图象相交于点B(m2),则关于x的不等式kxb2x的

数学专题Tag内容描述:

1、 专题专题 36 一次函数问题一次函数问题 一、一次函数一、一次函数 1一次函数的定义 一般地,形如 ykxb (k,b是常数,且 0k )的函数,叫做一次函数,其中 x 是自变量。 2一次函数的图像:是不经过原点的一条直线。 3一次函数的性质 (1)当 k0 时,图象主要经过第一、三象限;此时,y 随 x 的增大而增大; (2)当 k0 时,直线交 y 轴于正半轴; (4)当 b0 时,直线 。

2、 专题专题 37 37 二次函数问题二次函数问题 1.二次函数的概念二次函数的概念: 一般地,自变量 x 和 y 之间存在如下关系: y=ax2+bx+c(a0,a、b、c 为常数),则称 y 为 x 的二次函 数。抛物线)0,( 2 acbacbxaxy是常数,叫做二次函数的一般式。 2.2.二次函数二次函数 y=axy=ax 2 2 +bx+c(a +bx+c(a0)0)的图像与性质的图。

3、 专题专题 3838 反比例函数反比例函数 1反比例函数:反比例函数:形如 y x k (k 为常数,k0)的函数称为反比例函数。其他形式 xy=k、 1 kxy。 2图像:图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对 称轴:直线 y=x 和 y=-x。对称中心是:原点。它的图像与 x 轴、y 轴都没有交点,即双曲线的两个分支无 限接近坐标轴,但永。

4、 专题专题 43 43 整体思想运用整体思想运用 1.1.整体思想的含义整体思想的含义 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析, 找出整体与局部的联系, 从而在客观上寻求解决问题的新途径。整体是与局部对应的,按常规不容易求某一个(或多个)未知量时, 可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 2.2.整体思想方法具体应用。

5、 专题专题 44 44 构建方程的思想构建方程的思想 方程思想就是从分析问题的数量关系入手,适当设定未知数,运用定义、公式、性质、定理及条件,把所 研究的问题中已知量和未知量之间的数量关系转化为方程,从而使问题得到解决方程思想在数学解题中所 占比重较大,综合知识强、题型广、应用技巧灵活 1.利用勾股定理建立一元二次方程。 2.利用三角形三边关系可建立不等式。 3.利用圆的内接四边形内角和等于 3。

6、 专题专题 45 45 待定系数法待定系数法 1.1.待定系数法的含义待定系数法的含义 一种求未知数的方法。 将一个多项式表示成另一种含有待定系数的新的形式, 这样就得到一个恒等式。 然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数, 或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。 2. 2. 待定系数法的应用待定系数法的应用 (1)分。

7、 专题专题 19 解直角三角形问题解直角三角形问题 一、勾股定理和勾股定理逆定理一、勾股定理和勾股定理逆定理 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2b2=c2。 2勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2b2=c2。 ,那么这个三角形是直角三角形。 二、直角三角形的判定及性质二、直角三角形的判定及性质 1.直角三角形的判定 (1)有一个角。

8、 专题专题 18 18 等腰、等边三角形问题等腰、等边三角形问题 一、等腰三角形一、等腰三角形 1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶 角,底边和腰的夹角叫底角. 2.等腰三角形的性质 性质 1:等腰三角形的两个底角相等(简称“等边对等角”) 性质 2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”) 3.等腰。

9、 专题专题 20 20 相似三角形问题相似三角形问题 一、比例一、比例 1成比例线段(简称比例线段):对于四条线段 a、b、c、d,如果其中两条线段的长度的比与另两条线段的 长度的比相等,即 d c b a (或 a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。如果作为 比例内项的是两条相同的线段,即 c b b a 或 a:b=b:c,那么线段 b 叫做线段 a,c 的比例中项。

10、 专题专题 23 平行四边形问题平行四边形问题 1.1.平行四边形定义平行四边形定义 有两组对边分别平行的四边形叫做平行四边形。 平行四边形用符号 “ABCD” 表示, 读作 “平行四边形 ABCD” 。 2.2.平行四边形的性质平行四边形的性质 (1)平行四边形的对边平行且相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分。 3.3.平行四边形的判定平行四边形的判定 (1)。

11、 专题专题 26 菱形问题菱形问题 1.1.菱形的定义菱形的定义 :有一组邻边相等的平行四边形叫做菱形。 2.2.菱形的性质菱形的性质 (1)菱形的四条边都相等; (2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 3.3.菱形的判定定理菱形的判定定理 (1)一组邻边相等的平行四边形是菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四条边相等的四边形是菱形。 4 4菱形的面。

12、 专题专题 25 正方形正方形问题问题 1 1正方形定义:正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。 2 2正方形的性质:正方形的性质: (1)具有平行四边形、矩形、菱形的一切性质; (2)正方形的四个角都是直角,四条边都相等; (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角; (4)正方形是轴对称图形,有 4 条对称轴; (5)正方形的一条对。

13、 专题专题 30 尺规作图问题尺规作图问题 1.1.尺规作图的定义:尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法尺规作图可 以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。 2.2.尺规作图的五种基本情况尺规作图的五种基本情况 (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作已知线段的垂直平分线; (4)作已知角的角平分线。

14、 专题专题 41 概率问题概率问题 一、确定事件和随机事件一、确定事件和随机事件 1确定事件 (1)必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。 (2)不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。 2随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。 (1)有些事情我们能确定他一定会发生,这些事情称为必然事件; (。

15、专题专题 47 47 中考数学转化思想中考数学转化思想 1. 转化思想的含义 所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维方式。转化思想是数学思 想方法的核心,其它数学思想方法都是转化的手段或策略。初中数学中诸如化繁为简、化难为易、化未知 为已知等均是转化思想的具体体现 2.转化思想的表现形式: (1)把新问题转化为原来研究过的问题。如有理数减法转化为加法,除法转化为乘法等。

16、第二部分专题一题型一1(2019天水)已知ab,则代数式2a2b3的值是(B)A2B2C4D32已知(xy2)20,则x2y2_4_.3如图,在ABC中,A40,D是ABC和ACB平分线的交点,则BDC_110_.第3题图4如图,A,B,C两两不相交,且半径都是1,则图中三个扇形(即阴影部分)的面积之和为_.第4题图5已知方程a(2xa)x(1x)的两个实数根为x1,x2,设S.(1)当a2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由解:(1)当a2时,原方程化为x25x40,解得x14,x21,S213.(2)S,S2x1x22,a(2xa)x(1x)。

17、第二部分专题一题型二1一元二次方程x22x30的解是x11,x23.现给出另一个方程(2x3)22(2x3)30,它的解是(D)Ax11,x23Bx11,x23Cx11,x23Dx11,x232如图,点E在正方形ABCD的对角线AC上,且EC2AE,RtFEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(D)第2题图Aa2Ba2Ca2Da23已知ab0,且0,则_.第4题图4如图是一个三级台阶,它的每一级的长、宽、高分别为55,10和6,A和B是这个台阶的两个相对端点,A点有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线是_73_.5已知ABC的三边长分别为a,b,c,。

18、第二部分专题一题型三1(2019厦门一中模拟)在等腰三角形ABC中,A80,则B的度数为_20或50或80_.2(2019菏泽)如图,直线yx3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,1个单位长度为半径作P.当P与直线AB相切时,点P的坐标是_(,0)或(,0)_.第2题图3(2019绍兴)如图,在直线AP上方有一个正方形ABCD,PAD30,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连接ED,则ADE的度数为_15或45_.第3题图4(2019凉山)在ABCD中,E是AD上一点,且点E将AD分为23的两部分,连接BE,与AC相交。

19、第二部分专题一题型四1已知一次函数ykxb的图象与正比例函数y2x的图象相交于点B(m,2),则关于x的不等式kxb2x的解集为(B)第1题图Ax12在平面直角坐标系中,A(2,0),以点A为圆心,1为半径作A.若P(x,y)是A上任意一点,则的最大值为(D)A1BCD3(2019甘肃)如图是二次函数yax2bxc的图象,对于下列说法:ac0,2ab0,4acb2,abc0,当x0时,y随x的增大而减小,其中正确的是(C)ABCD第3题图4在RtABC中,BAC90,AB3,AC4,P为边BC上一动点,PEAB于点E,PFAC于点F.若M为EF的中点,则AM的最小值为_.第4题图5(2019重庆B卷)一天,小明从家出发匀速步行去学校。

20、重难专题解读,第二部分,专题一 数学思想方法,1,数学思想方法是指对数学知识和方法形成的规律性认识,是解决数学问题的根本策略,是沟通基础知识与能力的桥梁中考常用到的数学思想方法有整体思想、转化(化归)思想、分类讨论思想、数形结合思想等,考情分析,2,题型一 整体思想,【方法解读】整体思想就是整体与局部的对应,按常规不容易求某一个(或多个)未知量时,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决整体思想常用于求代数式的值,解方程(组)及不等式(组),求角度等,常考题型 精讲,3,例 1,典例精析,D,4。

【数学专题】相关PPT文档
【数学专题】相关DOC文档
标签 > 数学专题[编号:75014]