七年级有理数综合运算计算题题

目录例1例2例3例4例5例6例7例8例12例11例9例10【练习1】【练习2】【练习3】【练习4】【练习5】【练习6】例15例13目录例1例2例3例4例5例6例7例8例12例11例9例10【练习1】【练习2】【练习3】【练习4】【练习5】【练习6】例13例14目录例1例2例3例4例5例6例7例8例1

七年级有理数综合运算计算题题Tag内容描述:

1、27 有理数的乘法有理数的乘法 第第 1 课时课时 有理数的乘法法则有理数的乘法法则 1经历探索有理数乘法法则的过程,理解有理数的乘法法则 2能熟练进行有理数的乘法运算 3会利用有理数的乘法解决实际问题 一、情境导入 1小学我们学过了数的乘法的意义,比如说 23,62 3,一个数乘以整数是求 几个相同加数和的运算,一个数乘以分数就是求这个数的几分之几 2计算下列各题: (1)56; (2)31 6; (3) 3 2 1 3; (4)223 4; (5)20; (6)0 2 7. 引入负数之后呢,有理数的乘法应该怎么运算?这节课我们就来学习有理数的乘法 二、合作探究 探究点一。

2、2.8 有理数的除法有理数的除法 1.理解有理数的除法法则,会进行有理数的除法运算. 一、情境导入 1.计算: (1)2 50.2 ; (2)12(3) ; (3) (1.2)(2) ; (4) (12 5)0 . 2.由(3)4 ,再由除法是乘法的逆运算,可得(12) (3)4, ( 12) 4 . 同理, (3)(4) ,12 (4) ,12 (3) . 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试. 二、合作探究 探究点一:有理数的除法 计算: (1) (36) (6) ; (2) (32 3) 5 1 2. 解析: (1)中的两数能整除,可以确定商的符号后直接相除; (2)中两数不能。

3、25 有理数的减法有理数的减法 1经历探索有理数减法法则的过程,理解有理数的减法法则 2能熟练进行有理数的减法的运算,并灵活应用有理数减法解决实际问题,培养运算 能力,增强应用数学的意识 3通过把减法运算转化为加法运算,向学生渗透转化思想 一、情境导入 下图是 2015 年 1 月 30 日北京天气预报网上的北京天气情况, 从下图我们可以得知北京 从周五到下周二的最高温度为 6,最低温度为8.那么它的温差怎么算?6(8)? 二、合作探究 探究点一:有理数的减法运算 计算: (1)(3)(7); (2)1 3 1 2; (3)0(10) 解析:每个小题均是两个数的差。

4、,导入新课,讲授新课,当堂练习,课堂小结,9 有理数的乘方,第二章 有理数及其运算,1.理解并掌握有理数的乘方、幂、底数、指数的概 念及意义.(重点) 2.能够正确进行有理数的乘方运算.(难点),下图是日本某小学门前贴的一张海报,你懂其中的含义吗?,一点一滴地努力,总有一天能够变成巨大的力量. 反之,稍微有一点怠慢的话,总有一天会变得无力.,导入新课,手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折,每次对折称为一扣,如此反复操作,连续扣六七次后便成了许多。

5、,导入新课,讲授新课,当堂练习,课堂小结,8 有理数的除法,第二章 有理数及其运算,1.认识有理数的除法,经历除法的运算过程. 2.理解除法法则,体验除法与乘法的转化关系. 3.掌握有理数的除法及乘除混合运算.(重点、难点),你能很快地说出下列各数的倒数吗?,-1,导入新课,复习引入,2(3)=_ ,(4)(3)=_,89=_,0(6)=_,(4)3 =_ ,(6) 2=_,12(4)=_,729=_,(12)(4)=_,0(6)=_,观察右侧算式, 两个有理数相除时:,商的符号如何确定?,商的绝对值如何确定?,6,12,72,12,0,3,3,8,0,3,计算:,讲授新课,(6) 2=_,12(4)=_,729=_,(12)(4)=_,。

6、1 有理数,第二章 有理数及其运算,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.理解正、负数的概念,会判断一个数是正数还是 负数.(重点) 2.会用正负数表示具有相反意义的量.(难点) 3.能按一定的标准对有理数进行分类(难点),导入新课,结绳计数 由记数、排序,产生数1,2,3,观察下列图片,体会数的产生和发展过程.,由表示“没有”“空位”, 产生数0,?,零上5C,零下5C,思考:你能用小学学过的数能表示下列数吗?,讲授新课,合作探究,答对加10分,答错扣10分,不答得0分,红色所表示的得 分比0分低,带“”的得分比0分低,这里出现了比0。

7、,导入新课,讲授新课,当堂练习,课堂小结,5 有理数的减法,第二章 有理数及其运算,1.理解、掌握有理数的减法法则,会将有理数的减 法运算转化为加法运算.(重点、难点) 2.通过把有理数的减法运算转化为加法运算,渗透 转化思想,培养运算能力.,导入新课,你听说过国家级森林公园抱犊崮吗?已知某日抱犊崮山下温度为5 ,山上温度为5 ,你能列式表示出山上温度与山下温度的温差吗?,问题1:你能从温度计上看出5比5高多少摄氏度吗?用式子如何表示? 问题2: 5+(+5) = ? 结论:,讲授新课,合作探究,5(5)=10,5(5) = 5+(+5),试一试:请根据提供的。

8、4 有理数的加法,导入新课,讲授新课,当堂练习,课堂小结,第二章 有理数及其运算,第1课时 有理数的加法法则,学习目标,1.了解有理数加法的意义,理解有理数加法法则的 合理性. 2.能运用该法则准确进行有理数的加法运算.(重点) 3.经历探索有理数加法法则的过程,理解并掌握有 理数加法的法则.(难点),我是火炬手,点击演示1,+1,-1,(+1) +(-1),0,动物王国举办奥运会,蚂蚁当火炬手,它第一次从数轴上的原点上向正方向跑一个单位,接着向负方向跑一个单位蚂蚁经过两次运动后在哪里?如何列算式?,导入新课,情境引入,做一做:利用上面的例子来算。

9、,导入新课,讲授新课,当堂练习,课堂小结,7 有理数的乘法,第二章 有理数及其运算,第1课时 有理数的乘法法则,1.掌握有理数的乘法法则并能进行熟练地运算. (重点) 2.掌握多个有理数相乘的积的符号法则.(难点),导入新课,情境引入,李大爷经营了一家餐馆,因使用地沟油,每天亏损100元,下图是他的餐馆九月份的帐单,你能算出他亏损了多少吗?,A.(-100)+30,B.(-100)30,如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的点,l,1.如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm应该记为 .,2.如果3分钟以后记为+3分钟,那么3分钟以前应该记。

10、2019 届初三数学中考复习 有理数及其运算-绝对值的应用 专项综合训练1. 2 的绝对值是( )A2 B 2 C 2 D.122. 下列各式中,不成立的是( )A|8|8 B|8|8| C |7|7| D|6|63. 下列说法正确的是( )A一个数的绝对值一定不是负数B一个数的相反数一定是负数C一个数的绝对值的相反数一定是负数D一个数的绝对值一定是正数4. 若|a|2|,则( )Aa2 Ba2 Ca2 D以上均错5. 有理数 a,b 在数轴上对应点的位置如图所示,下列式子正确的是( )A|b|a B|a|b Cba D|a|b|6. |5|_;|0|_;|3|_;|(4)|_ 7若 a4,则|4a|_;|3.14| 8如果|a|a,则 a 的取值范围是_。

11、小结与复习,第二章 有理数及其运算,要点梳理,考点讲练,课堂小结,课后作业,要点梳理,一、有理数,1.用正、负数表示具有相反意义的量,有理数,正整数,负整数,负分数,正有理数,负有理数,正分数,零,有理数,正整数,正分数,整数,分数,零,负整数,自然数,2.有理数的分类,负分数,(1)按定义分类,(2)按符号分类,二、数轴,规定了原点、正方向、单位长度。

12、第第 2 课时课时 有理数乘法的运算律有理数乘法的运算律 1经历探索有理数乘法运算律的过程,理解有理数乘法运算律 2能熟练运用有理数乘法运算律简化运算 一、情境导入 中央电视台的“开心辞典”栏目,有一个“快算二十四”的趣味题,现在给出 113 之间四个自然数,将这四个数(只能用一次)进行加、减、乘、除运算,可加括号,使其结果 等于 24,如:对 1、2、3、4 可作运算“(123)424”或“123424”现有 四个有理数 3、4、6、10,你能运用上述规则写出两种不同的算式,使其结果等于 24 吗? 二、合作探究 探究点一:运用有理数的乘法运算律。

13、第第 2 课时课时 有理数加法的运算律有理数加法的运算律 1经历探索有理数加法运算律的过程,理解有理数加法运算律 2能熟练运用有理数加法运算律简化运算 一、情境导入 学习了有理数的加法运算法则后, 爱探索的小明发现, (3)(6)与(6)(3)相等, 8(3)与(3)8 也相等,于是他想:是不是任意的两个加数,交换它们的位置后,和仍 然相等呢?同学们你们认为呢? 二、合作探究 探究点一:运用有理数的加法运算律简化运算 计算: (1)(27)13(43)46; (2)5.75(8)23 4 4; (3)33 8 (14 3 )3.125(26 3 ); (4)2.632 5 2 71.01 5 70.36. 解析:(1)将正。

14、,导入新课,讲授新课,当堂练习,课堂小结,11 有理数的混合运算,第二章 有理数及其运算,1.掌握有理数混合运算的法则,并能熟练地进行有理 数加、减、乘、除、乘方的混合运算.(重点) 2.在运算过程中能合理地使用运算律简化运算.(难点),导入新课,复习引入,我们目前都学习了哪些运算?请举出一些例子.,加法、减法、乘法、除法、乘方.,从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或24.其中红色扑克牌代表负数,黑色扑克牌代表正数,J,Q,K分别代表11,12,13.,1.只含某一级运。

15、,导入新课,讲授新课,当堂练习,课堂小结,7 有理数的乘法,第二章 有理数及其运算,第2课时 有理数乘法的运算律,1.掌握乘法的分配律,并能灵活的运用.(难点) 2.掌握有理数乘法的运算律,并利用运算律简化乘 法运算.(重点),导入新课,问题引入,在小学里,我们都知道,数的乘法满足交换律、结合律和分配律,例如,35=53 (35)2=3(52) 3(5+2)=35+32,引入负数后,三种运算律是否还成立呢?,第一组:,(2) (34)0.25 3(40.25),(3) 2(34) 2324,(1) 23 32,思考:上面每小组运算分别体现了什么运算律?,23 32,(34)0.25 3(40.25),2。

16、,导入新课,讲授新课,当堂练习,课堂小结,6 有理数的加减混合运算,第二章 有理数及其运算,学习目标,1.理解加减法统一成加法的意义,能熟练地进行有 理数加减法的混合运算.(重点) 2.通过加减法的相互转化,培养应变能力、计算能 力.(难点),导入新课,一口深3.5米的深井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米. 问题:小青蛙爬出井了吗?,1.引入相反数后,加减混合运算可以统一为。

17、,导入新课,讲授新课,当堂练习,课堂小结,4 有理数的加法,第二章 有理数及其运算,第2课时 有理数加法的运算律,1.能概括出有理数的加法交换律和结合律. 2.灵活熟练地运用加法交换律、结合律简化运算 (重点、难点),导入新课,情境引入,学习了有理数的加法运算法则后,爱探索的小明发现,(3)(6)与(6)(3)相等,8(3)与(3)8也相等,于是他想:是不是任意的两个加数,交换它们的位置后,和仍然相等呢?同学们你们认为呢?,3,-5,-2,-5,3,-2,你们能再举一些数字也符合这样的结论吗?试试看!,讲授新课,合作探究,3,-5,),-7,-9,(,3,-5,-7,-9,(,),你。

18、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,目录,上一页,空白页,知识回顾【练习1】,下列数中,哪些属于负数?哪些属于非正数?哪些属于正分数?哪些属于非负有理数? 负数:_ 非正数:_ 正分数:_ 非负有理数:_,目录,上一页,空白页,知识回顾【练习2】,用四舍五入法,按要求取近似值,并用科学记数法表示。 (1)地球上七大洲的面积约为149480000km2 (保留2个有效数字)_ (2)某人一天饮水1890ml(精确到1000ml)_ (3。

19、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,例14,【练习9】,【练习8】,【练习7】,目录,上一页,空白页,知识要点,注:正数和零统称为非负数; 负数和零统称为非正数; 正整数和零统称为非负整数; 负整数和零统称为非正整数;,目录,上一页,空白页,【例1】,判断下列说法正确与否 一个有理数不是整数就是分数 ( ) 一个有理数不是正数就是负数 ( ) 一个整数不是正的,就是负的 ( ) 一个分数不是正的,就是负的 ( ) 当一个数由小变大时,它的绝对值也。

20、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例15,例13,例14,【练习9】,【练习8】,【练习7】,目录,上一页,空白页,知识要点,注:正数和零统称为非负数; 负数和零统称为非正数; 正整数和零统称为非负整数; 负整数和零统称为非正整数;,目录,上一页,空白页,热身1,判断下列说法正确与否 一个有理数不是整数就是分数 ( ) 一个有理数不是正数就是负数 ( ) 一个整数不是正的,就是负的 ( ) 一个分数不是正的,就是负的 ( ) 当一个数由小变大时,它的绝对。

【七年级有理数综合运算计算】相关PPT文档
【七年级有理数综合运算计算】相关DOC文档
标签 > 七年级有理数综合运算计算题题[编号:32948]