六年级高斯学校竞赛构造论证二含答案

第 17 讲应用题综合二内容概述各种具有较强综合性的复杂应用题包含多种可能情况,需要进行分类讨论的问题;需要进行合理守排对策,以达到最佳效果的问题典型问题兴趣篇1有一批砖,每块砖的长和宽都是自然数,且长比宽长 12 厘米如图 17-1,若把这批砖横着铺,则可铺 897 厘米长;如图 17-2,若竖横

六年级高斯学校竞赛构造论证二含答案Tag内容描述:

1、第 17 讲应用题综合二内容概述各种具有较强综合性的复杂应用题包含多种可能情况,需要进行分类讨论的问题;需要进行合理守排对策,以达到最佳效果的问题典型问题兴趣篇1有一批砖,每块砖的长和宽都是自然数,且长比宽长 12 厘米如图 17-1,若把这批砖横着铺,则可铺 897 厘米长;如图 17-2,若竖横相间铺,则可铺 657 厘米长,请问:如图 17-3这样铺,可铺多少厘米长?2一种商品的定价为整数元,100 元最多能买 3 件,甲、乙两人各带了若干张百元钞票,甲带的钱最多能买 7 件这种商品,乙带的钱最多能买 14 件,两人的钱凑在一起就能多买 。

2、第 16 讲最值问题二内容概述各种类型的复杂最值问题,通常采用枚举、局部调整和极端分析等方法有些情况下,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证典型问题兴趣篇1用 0,1,2,9 这 10 个数字各一次组成 5 个两位数 a、b、c、d、e请问:a b + c d + e 最大可能是多少?2将 135 个人分成若干小组,要求任意两个组的人数都不同,最多可以分成多少组?这时,人数最少的那组有多少人?3有 11 个同学计划组织一场围棋比赛,他们准备分为两组,每组进行单循环比赛,那么他们最少需要比赛多少场?4我们知道,很多自然数可以。

3、第 19 讲数字谜综合二内容概述各类综合性较强的复杂数字谜问题典型问题兴趣篇1将 表示成两个自然数的倒数之和,请给出所有的答案,42在算式 中,a、b、c 分别代表三个不同的自然数,这三个数的和可能是18多少?3如图 19-1,将图中每一行左右相邻的两数相加,再除以 12,将所得的余数写在它们下一行相应的圆圈内逐行依次进行上面的操作,最后得到最底端的一个数请问:对于第一行中不同的自然数 z,最底端的数一共有多少种取值,分别是什么?4将最小的 10 个合数填到图 19-2 的 10 个空格中,要求满足以下条件:填人的数能被它所在列的最上。

4、第 15 讲几何综合二内容概述综合运用各种方法处理具有相当难度的几何问题掌握几何变换的初步技巧,例如平移、翻转、旋转等,必要时可利用辅助线进行分析典型问题兴趣篇1图 15-1 中有半径分别为 5 厘米、4 厘米、3 厘米的三个圆,A 部分(即两小圆重叠部分)的面积与阴影部分的面积相比,哪个大?大多少?2如图 15-2,在两个同心圆上有一条两端点都在大圆上的线段与小圆相切,其长度为 10 厘米求阴影部分的面积 ( 取 3.14)3如图 15-3,大正方形中有三个小正方形,右上角正方形的面积为 27,左下角正方形的面积为 12,中间阴影正方形的 2 。

5、第 9 讲计算综合二内容概述综合性较强的计算问题。典型问题兴趣篇1计算: ).095321.()857.635.4(3 2要使等式 成立,方格内应该填入多少?40) 2.1(6. 3计算: 2801532474计算: .319505计算下列繁分数: ;321)(;4132)(1987)(6算式 的计算结果,小数点后第 2008 位是数字几?098765127定义运算符号“” 满足: 计算下列各式:ba(1) 100102; (2) (34) 5 )32(18已知 ,那么方框所代表的数是什么?87645:37 :129如图 9-1,每一条线段的长度规定为它的端点上两数之和,图中 6 条线段的长度总和是多少?10我们规定:n=nnl) ,比如:l=l2,2=23,。

6、第 18 讲数论综合二内容概述综合运用各种知识解决的较复杂教论问题;与二次不定方程、分式不定方程有关的数论问题典型问题兴趣篇1有 4 个不同的正整数,它们中任意 2 个数的和都是 2 的倍数,任意 3 个数的和都是 3 的倍数要使这 4 个数的和尽可能小,这 4 个数应该分别是多少?2已知算式(123n)+2007 的结果可表示为 n(n1)个连续自然数的和请问:共有多少个满足要求的自然数 n?3有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有 4 种所有满足上述条件的自然数中最小的一个是多少?4。

7、第二十四讲 构造论证二 例1 (1)把 1、2、3、8、9 按合适的顺序填在图中第二行的空格中,使得每两个上、 下对齐的数之和都是平方数 (2)能否将 1、2、3、10、11 按合适的顺序填在图中第二行的空格中,使得每两 个上、下对齐的数之和都是平方数?若不能请说明理由 分析分析 (1)首先判断由 1 到 9 可以凑成的平方数的范围,然后逐一计算一下哪些数一 起可以凑成平方数,从情况唯一或较少的数字填起; (2)分析方法同上一问,注意是否 一定能填出 练习 1、把 1、2、13、14 按合适的顺序填在图中第二行的空格中,使得每列的两 个数之和都。

【六年级高斯学校竞赛构造论】相关DOC文档
六年级高斯学校竞赛应用题综合二含答案
六年级高斯学校竞赛最值问题二含答案
六年级高斯学校竞赛数字谜综合二含答案
六年级高斯学校竞赛几何综合二含答案
六年级高斯学校竞赛计算综合二含答案
六年级高斯学校竞赛数论综合二含答案
标签 > 六年级高斯学校竞赛构造论证二含答案[编号:144767]