初中 代数 压轴

【典例指引】类型一 参数值的探究例1 【2016年高考四川理数】(本小题满分13分)已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线与椭圆E有且只有一个公共点T.()求椭圆E的方程及点T的坐标;()设O是坐标原点,直线l平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P证

初中 代数 压轴Tag内容描述:

1、典例指引】类型一 参数值的探究例1 【2016年高考四川理数】(本小题满分13分)已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线与椭圆E有且只有一个公共点T.()求椭圆E的方程及点T的坐标;()设O是坐标原点,直线l平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P证明:存在常数,使得,并求的值.方程的判别式为,由,解得.由得.所以 ,同理,学*所以.故存在常数,使得.类型二 恒等式成立探究例2. 【2015高考四川,理20】如图,椭圆E:的离心率是,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行与轴时,直线被椭圆E截得的线段长为.(1)求椭圆E的方程;(2)在平面直角坐标系中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.(2)当直线与轴平行时,设直线与椭圆相交于C、D两点.如果存在定点Q满足条件,则,即.所以Q点在y轴上,可设Q点的坐标为.当直线与轴垂直时,设直线与椭圆相交于M、N两点.。

2、圆锥曲线问题的通性通法,缺点是计算量较大,费时费力,容易出错,通常根据题设条件,设出点的坐标和直线方程,将直线方程代入曲线方程,化为关于的一元二次方程,利用韦达定理用参数表示出来,根据题中条件列出关于参数的方程,通过解方程解出参数值,即可得出圆锥曲线的方程。
不管是哪种方法,最终都要列出关于圆锥曲线方程中的参数的方程问题,通过解方程解出参数值,即可得到圆锥曲线方程,故将利用平面几何知识和圆锥曲线的定义与性质是将几何问题转化为代数问题,简化解析几何计算的重要途径.【典例指引】类型一 待定系数法求椭圆方程 例1 【2014年全国课标,理20】设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.()若直线MN的斜率为,求C的离心率;()若直线MN在y轴上的截距为2,且,求a,b.类型2 参数法求椭圆方程例2.【2015高考安徽,理20】设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.(I)求E的离心率e;(II)设点C的坐标为,N为线段AC的中点,点N关于直线AB的。

3、法.【典例指引】类型一 面积计算例1 【2016高考上海理数】(本题满分14)有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。
于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图(1) 求菜地内的分界线的方程(2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。
设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值【解析】类型二 四边形形状探究例2. 【2015高考新课标2,理20】已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由【解析】类型三 探究角是否相等例3【2015高考北京,理19】已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点。

4、的量无关当使用直线的斜率和截距表示直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决(3)恒等式的证明问题,将恒等式转化为常见的弦长、距离之比或向量关系等问题,进而转化为直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.(4)几何图形性质的证明,利用几何图形性质与向量运算的关系,转化为向量的运算或直线的斜率关系,再用直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.【典例指引】类型一 证明分点问题例1 【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.()求抛物线C的方程,并求其焦点坐标和准线方程;来源:学*科*网Z*X*X*K()求证:A为线段BM的中点.【解析】类型二 几何证明问题例2. 【2015高考湖南,理20】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于,两点,与。

5、易出错,通常根据题设条件,设出点的坐标和直线方程,将直线方程代入曲线方程,化为关于的一元二次方程,利用韦达定理用参数表示出来,根据题中条件列出关于参数的方程,通过解方程解出参数值,即可得出圆锥曲线的方程。
不管是哪种方法,最终都要列出关于圆锥曲线方程中的参数的方程问题,通过解方程解出参数值,即可得到圆锥曲线方程,故将利用平面几何知识和圆锥曲线的定义与性质是将几何问题转化为代数问题,简化解析几何计算的重要途径.【典例指引】类型一 待定系数法求椭圆方程 例1 【2014年全国课标,理20】设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.()若直线MN的斜率为,求C的离心率;()若直线MN在y轴上的截距为2,且,求a,b.【解析】()由题意得:,的斜率为,又,解之:或(舍)故直线的斜率为时,的离心率为.()(几何分析法)依据题意,原点为的中点,轴,与轴的交点是线段的中点,=,即,过作轴于,则,设,则,=,联立解得,. 。

6、时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决(3)恒等式的证明问题,将恒等式转化为常见的弦长、距离之比或向量关系等问题,进而转化为直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.(4)几何图形性质的证明,利用几何图形性质与向量运算的关系,转化为向量的运算或直线的斜率关系,再用直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.【典例指引】类型一 证明分点问题例1 【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.()求抛物线C的方程,并求其焦点坐标和准线方程;()求证:A为线段BM的中点.直线ON的方程为,点B的坐标为.因为,所以.学科*网故A为线段BM的中点.类型二 几何证明问题例2. 【2015高考湖南,理20】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于,两点。

7、的量无关当使用直线的斜率和截距表示直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决(3)恒等式的证明问题,将恒等式转化为常见的弦长、距离之比或向量关系等问题,进而转化为直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.(4)几何图形性质的证明,利用几何图形性质与向量运算的关系,转化为向量的运算或直线的斜率关系,再用直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.【典例指引】类型一 证明分点问题例1 【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.()求抛物线C的方程,并求其焦点坐标和准线方程;来源:Z*X*X*K()求证:A为线段BM的中点.【解析】类型二 几何证明问题例2. 【2015高考湖南,理20】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于,两点,与相交于,两。

8、例1 【2016高考上海理数】(本题满分14)有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。
于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图(1) 求菜地内的分界线的方程(2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。
设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值所求的矩形面积为,而所求的五边形面积为矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差的绝对值为,所以五边形面积更接近于面积的“经验值”学*科网类型二 四边形形状探究例2. 【2015高考新课标2,理20】已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由 。

9、法.【典例指引】类型一 面积计算例1 【2016高考上海理数】(本题满分14)有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。
于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图(1) 求菜地内的分界线的方程(2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。
设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值【解析】类型二 四边形形状探究例2. 【2015高考新课标2,理20】已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由【解析】类型三 探究角是否相等例3【2015高考北京,理19】已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点。

10、 , .-2 分0,O3203a(2)对称轴为直线 ;2x顶点的纵坐标为 .-4 分a(3) (i)当 0 时 ,依题意, -23.a ,解得 .(ii)当 0a 时 ,依题意, -23. ,解得 a -.综上, ,或 . -7 分2 3a2. (2018 西城区一模)在平面直角坐标系 xOy 中,抛物线 G: (m0)与 y 轴交于点 C,抛21ymx物线 G 的顶点为 D,直线 l: (m0) 1yx(1)当 时,画出直线 l 和抛物线 G,并直接写出直线 l 被抛物线 G 截得的线段长;m(2)随着 m 取值的变化,判断点 C, D 是否都在直线 l 上并说明理由;(3)若直线 l 被抛物线 G 截得的线段长不小于 2,结合函数的图象,直接写出 m 的取值范围. 解:(1)当 时,抛物线 G 的函数表达式为 ,直线 l 的函数表达式为 1m2yxyx画出的两个函数的图象如图 6。

11、易出错,通常根据题设条件,设出点的坐标和直线方程,将直线方程代入曲线方程,化为关于的一元二次方程,利用韦达定理用参数表示出来,根据题中条件列出关于参数的方程,通过解方程解出参数值,即可得出圆锥曲线的方程。
不管是哪种方法,最终都要列出关于圆锥曲线方程中的参数的方程问题,通过解方程解出参数值,即可得到圆锥曲线方程,故将利用平面几何知识和圆锥曲线的定义与性质是将几何问题转化为代数问题,简化解析几何计算的重要途径.【典例指引】类型一 待定系数法求椭圆方程 例1 【2014年全国课标,理20】设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.()若直线MN的斜率为,求C的离心率;()若直线MN在y轴上的截距为2,且,求a,b.【解析】()由题意得:,的斜率为,又,解之:或(舍)故直线的斜率为时,的离心率为.()(几何分析法)依据题意,原点为的中点,轴,与轴的交点是线段的中点,=,即,过作轴于,则,设,则,=,联立解得,. 。

12、时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决(3)恒等式的证明问题,将恒等式转化为常见的弦长、距离之比或向量关系等问题,进而转化为直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.(4)几何图形性质的证明,利用几何图形性质与向量运算的关系,转化为向量的运算或直线的斜率关系,再用直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.【典例指引】类型一 证明分点问题例1 【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.()求抛物线C的方程,并求其焦点坐标和准线方程;()求证:A为线段BM的中点.直线ON的方程为,点B的坐标为.因为,所以.*网故A为线段BM的中点.类型二 几何证明问题例2. 【2015高考湖南,理20】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于,两点,与。

13、例1 【2016高考上海理数】(本题满分14)有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。
于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图(1) 求菜地内的分界线的方程(2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。
设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值所求的矩形面积为,而所求的五边形面积为矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差的绝对值为,所以五边形面积更接近于面积的“经验值”学*类型二 四边形形状探究例2. 【2015高考新课标2,理20】已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由 解。

14、D 点坐标(4,0) ,当 时,求 a 的取值范围.PDA【答案】解:(1)把 代入二次函数得: 即0y2(3)0x(3)10ax 23,1x点 A 在点 B 的左侧, , 2 分(,0)(,)(2)抛物线的对称轴为直线: ; 21ax由题意二次函数的顶点为 ,3 分(1,4)代入解析式,可得 a抛物线的解析式为 4 分23yxD 点坐标(4,0) , PD轴点 P 的横坐标为 4,代入得 5 分23yax5yaD 点坐标(4,0) ,A 点坐标( ,0)1 5A P 或 6 分1a【2018 朝阳二模】2.已知二次函数 )0(22axy(1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当 1x5 时,函数图象的最高点为 M,最低点为N,点 M 的纵坐标为 ,求点 M 和点 N 的坐标;21(3)对于该二次函数图。

15、代数中的新定义问题,例,重庆,对于一个各数位上的数字均不为的三位自然数,若能被它的各数位上的数字之和整除,则称是的,和倍数,例如,是的,和倍数,又如,不是,和倍数,判断,是否是,和倍数,说明理由,三位数是的,和倍数,分别是数其中一个数位上的。

16、专题40代数综合压轴题类型一配方法的应用1,2022南京模拟,利用我们学过的完全平方公式及不等式知识能解决方程或代数式的一些问题,请阅读下列材料,阅读材料,若m22mm,2n28n,160,求m,n的值2,2022秋和平区校级期末,已知多项。

17、个定值;当ODP为等腰三角形时,点D的坐标为(,0)其中正确结论的个数是()A1个B2个C3个D4个【考点】矩形的性质、锐角三角函数、相似三角形的判定和性质、勾股定理、等腰三角形的性质【解答】解:四边形OABC是矩形,B(2,2),OABC2;故正确;点D为OA的中点,ODOA,PC2+PD2CD2OC2+OD222+()27,故正确;如图,过点P作PFOA于F,FP的延长线交BC于E,PEBC,四边形OFEC是矩形,EFOC2,设PEa,则PFEFPE2a,在RtBEP中,tanCBO,BEPEa,CEBCBE2a(2a),PDPC,CPE+FPD90,CPE+PCE90,FPDECP,CEPPFD90,CEPPFD,FD,tanPDC,PDC60。

【初中 代数 压轴】相关DOC文档
标签 > 初中 代数 压轴[编号:199357]