第二课时第二课时 函数函数 yAsinx的图象与性质的应用的图象与性质的应用 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 答案 D 解析 依题意得 T247123,所以 2, 4.4 函数函数 yAsin(x)的图象及应用的图象及应
3.4.2 函数yAsinx的图象与性质一 学案含答案Tag内容描述:
1、第二课时第二课时 函数函数 yAsinx的图象与性质的应用的图象与性质的应用 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 答案 D 解析 依题意得 T247123,所以 2。
2、 4.4 函数函数 yAsin(x)的图象及应用的图象及应用 最新考纲 考情考向分析 1.了解函数 yAsin(x)的物理意义;能画出 y Asin(x)的图象 2.了解参数 A, 对函数图象变化的影响 3.会用三角函数解决一些简单实际问题,体会三 角函数是描述周期变化现象的重要函数模型. 以考查函数 yAsin(x)的图象的 五点法画图、图象之间的平移伸缩变 换、 由图象求函数解析式以及利用正弦 型函数解决实际问题为主, 常与三角函 数的性质、 三角恒等变换结合起来进行 综合考查, 加强数形结合思想的应用意 识 题型为选择题和填空题, 中档难度. 1yAsin(x)的有关概。
3、8函数yAsin(x)的图像与性质(一)学习目标1.理解yAsin(x)中,A对图像的影响.2.掌握ysin x与yAsin(x)图像间的变换关系,并能正确地指出其变换步骤知识点一(0)对函数ysin(x),xR的图像的影响如图所示,对于函数ysin(x)(0)的图像,可以看作是把ysin x的图像上所有的点向左(当0时)或向右(当1时)或伸长(当01时)或缩短(当0A1时)到原来的A倍(。
4、 1.5 函数函数 yAsin(x)的图象的图象(一一) 学习目标 1.理解 yAsin(x)中 ,A 对图象的影响.2.掌握 ysin x 与 yAsin(x )图象间的变换关系,并能正确地指出其变换步骤 知识点一 (0)对函数 ysin(x),xR 的图象的影响 如图所示,对于函数 ysin(x)(0)的图象,可以看作是把 ysin x 的图象上所有的点向 左(当 0 时)或向右(当 0)。
5、第2课时函数yAsin(x)的图象与性质一、选择题1函数y2sin的周期、振幅、初相分别是()A.,2, B4,2,C4,2, D2,2,答案C解析由函数解析式,得A2,T4.2如图所示,函数的解析式为()Aysin BysinCycos Dycos答案D解析由图知T4,2.又当x时,y1,经验证,可得D项解析式符合题目要求3若函数f(x)3sin(x)对任意x都有ff,则有f等于()A3或0 B3或0C0 D3或3答案D解析由ff知,x是函数的对称轴,解得f3或3,故选D.4将函数f(x)sin x(其中0)的图象向右平移个单位长度,所得图象经过点,则的最小值是()A. B1 C. D2考点正弦、余弦函数性质的综合应用题点正弦。
6、3.4.2函数yAsin(x)的图象与性质(二)基础过关1已知简谐运动f(x)2sin(|2,且最小值为正数,A符合,当|a|1时T2,B符合排除A、B、C,故选D.3yf(x)是以2为周期的周期函数,其图象的一部分如图所示,则yf(x)的解析式为()Ay3sin(x1)By3sin(x1)Cy3sin(x1)Dy3sin(x1)答案D解析A3,1,由1,1,f(x)3。
7、3.4.2函数yAsin(x)的图象与性质(一)基础过关1.函数y2sin在一个周期内的三个“零点”的横坐标可能是()A.,B.,C.,D.,答案B2.为了得到函数ysin的图象,可以将函数ycos 2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度答案B解析ysincoscoscoscos 2.3.为得到函数ycos(x)的图象,只需将函数ysin x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案C4将函数ysin的图象向右平移个单位长度,所得图象对应的函数()A在区间上单调递增B在区间上单调递。