(山东省德州市 2019 届高三期末联考数学(理科)试题)5.已知定义在 的奇函数 满足 ,当 时, ,则 ( )A. B. 1 C. 0 D. -1【答案】D【解析】【分析】根据题意,分析可得 f( x+4) f( x+2) f( x) ,即函数是周期为 4 的周期函数,可得 f(2019) f(
2019届高三上期末数学分类汇编解析7基本初等函数Tag内容描述:
1、(山东省德州市 2019 届高三期末联考数学(理科)试题)5.已知定义在 的奇函数 满足 ,当 时, ,则 ( )A. B. 1 C. 0 D. -1【答案】D【解析】【分析】根据题意,分析可得 f( x+4) f( x+2) f( x) ,即函数是周期为 4 的周期函数,可得 f(2019) f(1+2020) f(1) ,结合函数的奇偶性与解析式分析可得答案【详解】根据题意,函数 f( x)满足 f( x+2) f( x) ,则有 f( x+4) f( x+2) f( x) ,即函数是周期为 4 的周期函数,则 f(2019) f(1+2020) f(1) ,又由函数为奇函数,则 f(1) f(1)(1) 21;则 f(2019。
2、(山东省德州市 2019 届高三期末联考数学(理科)试题)8.第 24 届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为 ,大正方形的面积为 ,直角三角形中较小的锐角为 ,则 ( )A. B. C. D. 【答案】D【解析】【分析】由图形可知三角形的直角边长度差为 a,面积为 6 ,列方程组求出直角边得出 sin,代入所求即可得出答案【详解】由题意可知小正方形的边长为 a,大正方形边长为 5a,直角三角形的面积为6 ,设直角三角形的直角边分别为 x,。
3、(山东省潍坊市 2019 届高三上学期期末测试数学(理科)试题)7.若将函数 的图象向右平移 个单位长度,则平移后所得图象对应函数的单调增区间是( )A. B. C. D. 【答案】A【解析】【分析】结合左加右减,得到新函数解析式,结合正弦函数的性质,计算单调区间,即可。【详解】结合左加右减原则 单调增区间满足,故选 A。【点睛】本道题考查了正弦函数平移及其性质,难度中等。(福建省宁德市 2019 届高三第一学期期末质量检测数学理科试题)6.将函数 的图象向右平移 个单位,得到函数 的图象,则函数 图象的一条对称轴方程为( )A. B. C.。
4、(山东省烟台市 2018 届高三下学期高考诊断性测试数学(文)试题)9.定义在 R 上的连续奇函数 f(x)在 上是增函数,则使得 f(x)f(x2-2x+2)成立的 x 的取值范围是A. B. C. D. 【答案】A【解析】由题意可行 f(x)在 R 上单调递增,所以要使 f(x)f(x2-2x+2)成立,只需 ,解得1-2,由此求得 x 的取值范围【详解】根据 f( x) ex e x在 R 上单调递增,且 f( -x) e x ex =- f( x) ,得f( x)为奇函数, f(3x 一 1)-f(2)=f(-2), 3x 一 1-2,解得 ,故答案为 .【点睛】本题主要考查函数的单调性和奇偶性的应用,属于中档题(湖南省长沙市 2019。
5、(广西桂林、贺州、崇左三市 2018 届高三第二次联合调研考试数学(理)试题)13.设函数 若 ,则 _【答案】3【解析】由函数解析式,可得 即 ,则 即答案为 3.(江西省新余市 2019 届高三上学期期末考试数学(理)试题)4.已知函数 ,则 A. 1 B. C. 2019 D. 【答案】D【解析】【分析】推导出 ,从而 ,由此能求出结果【详解】解: 函数 ,故选: D【点睛】本题考查由分段函数解析式求函数值,考查函数性质等基础知识,考查运算求解能力,是基础题(河北省张家口市 2019 届高三上学期期末考试数学(文)试题)13.已知 ,且 , ,则 _【答案】2。
6、(辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校 2019 届高三上学期期末考试数学(文)试题)4.若两个正实数 满足 ,且不等式 有解,则实数 的取值范围是( )A. B. C. D. 【答案】B【解析】分析:不等式 有解,即为 大于 的最小值,运用乘 1 法和基本不等式,计算即可得到所求最小值,解不等式可得 m 的范围来源:学*科*网详解:正实数 满足 则 =4,当且仅当 , 取得最小值 4由 x 有解,可得 解得 或 故选 D 来源:Z_xx_k.Com点睛: 本题考查不等式成立的条件,注意运用转化思想,求最值,同时考查乘 1 法和基本不等式的运。
7、(湖南省长沙市 2019 届上学期高三统一检测理科数学试题)10.已知 ,若函数 有三个零点,则实数 的取值范围是A. B. C. D. 【答案】A【解析】【分析】本道题将零点问题转化成交点个数问题,利用数形结合思想,即可。【详解】 有三个零点, 有一个零点,故,有两个零点,代入 的解析式,得到 ,构造新函数,绘制这两个函数的图像,如图可知因而 介于 A,O 之间,建立不等关系 ,解得 a 的范围为 ,故选 A。【点睛】本道题考查了函数零点问题,难度加大。(湖南省长沙市 2019 届高三上学期统一检测文科数学试题)12.已知 ,若函数 有三个零点。
8、(山东省德州市 2019 届高三期末联考数学(理科)试题)10.如果 是抛物线 上的点,它们的横坐标 , 是抛物线 的焦点,若 ,则 ( )A. 2028 B. 2038 C. 4046 D. 4056【答案】B【解析】【分析】由抛物线性质得| PnF| xn+1,由此能求出结果【详解】 P1, P2, Pn是抛物线 C: y24 x 上的点,它们的横坐标依次为 x1, x2, xn, F 是抛物线 C 的焦点,,( x1+1)+( x2+1)+( x2018+1) x1+x2+x2018+2018 2018+20=2038故选:B【点睛】本题考查抛物线中一组焦半径和的求法,是中档题,解题时要认真审题,注意抛物线的性质的合理运用(山东省。
9、(湖北省 2019 届高三 1 月联考测试数学(理)试题)3.函数 的大致图像是( )A. B. C. D. 【答案】A【解析】【分析】先判断函数为偶函数,再求出 f(1)即可判断【详解】f(x) f(x),则函数 f(x)为偶函数,故排除 C、D,当 x1 时,f( 1) 0,故排除 B,故选:A【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.(山东省烟台市 20。