2.3用公式法求解一元二次方程第1课时课件

,21.3 实际问题与一元二次方程 第1课时,1.掌握列一元二次方程解应用题的步骤:审、设、列、 解、检、答 2.建立一元二次方程的数学模型,解决如何全面地比较 几个对象的变化状况,我们已经学过了几种解一元二次方程的方法?,分解因式法 (x-p)(x-q)=0,直接开平方法,配方法,x2=a (a0

2.3用公式法求解一元二次方程第1课时课件Tag内容描述:

1、21.3 实际问题与一元二次方程 第1课时,1.掌握列一元二次方程解应用题的步骤:审、设、列、 解、检、答 2.建立一元二次方程的数学模型,解决如何全面地比较 几个对象的变化状况,我们已经学过了几种解一元二次方程的方法?,分解因式法 (x-p)(x-q)=0,直接开平方法,配方法,x2=a (a0),(x+m)2=n (n0),公式法,【例1】 有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个?,开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有_人患了流感;,第二轮传染中,这些人中的每个。

2、2.6 应用一元二次方程,第二章 一元二次方程,第1课时 行程问题及几何问题,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.掌握列一元二次方程解决几何问题、数学问题,并能根据具体 问题的实际意义,检验结果的合理性.(重点、难点) 2.理解将实际问题抽象为方程模型的过程,并能运用所学的知识解决问题,问题:如图,在一块长为 92m ,宽为 60m 的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为 885m2 的 6 个矩形小块,水渠应挖多宽?,分析:设水渠宽为xm,将所有耕地的面积拼在一起,变成一个新的矩形,长为 (92 2x )m, 宽(60 。

3、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(1),一元二次方程有什么特点?,整式方程 未知数的个数是1 含有未知数的项的最高次数是2,含有一个未知数,并且所含未知数的项的次数都为2的方程。,什么是一元二次方程?,课前回顾,ax2+bx+c=0 (a,b,c为常数,a0),一元二次方程的一般形式:,a,b,c分别叫做二次项系数、一次项系数和常数项.,课前回顾,还记得下面这一问题吗?,我们列出的一元二次方程为,情境导入,把面积为4的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。,设正方。

4、第 2 课时 用公式法解一元二次方程01 基础题知识点 用公式法解一元二次方程1用公式法解一元二次方程 3x22x30 时,首先要确定 a,b,c 的值,下列叙述正确的是(D)Aa3,b2,c3Ba 3,b 2,c3Ca 3,b 2,c3Da3,b2,c32方程 x2x10 的一个根是(D)A1 B.51 52C1 D.5 1 523一元二次方程 x2pxq0(p 24q0)的两个根是(A)A. B.p p2 4q2 p p2 4q2C. D.p p2 4q2 p p2 4q24已知关于 x 的方程 ax2bxc0 的一个根是 x1 ,且 b24ac 0,则此方程的另一12个根 x2 125用公式法解下列方程:(1)x24x10;解:a1,b4,c 1, b24ac 4 24。

5、第2课时用逼近法求一元二次方程的近似根知识点 1用图像求一元二次方程的近似根1.抛物线y=x2-2x+0.5如图5-4-5所示,利用图像可得方程x2-2x+0.5=0的近似根(精确到0.1)为 ()图5-4-5A.1.7或0.3 B.1.6或0.4C.1.5或0.5 D.1.8或0.22.已知二次函数y=ax2+bx+c的图像的顶点坐标为(-1,-3.2),部分图像如图5-4-6,由图像可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x11.3和x2()图5-4-6A.-1.3 B.-2.3 C.-0.3 D.-3.33.图5-4-7是二次函数y=ax2+bx-c的部分图像,由图像可知关于x的一元二次方程ax2+bx=c的两个根可能是.(精确到0.1)图5-4-7知识点 2用表格求。

6、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(2),列方程解应用题的一般步骤:,即审题,找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系。,设元,包括设直接未知数或间接未知数,以及用含未知数的代数式表示其他相关量。,根据等量关系列出方程。,解方程。,检验根的准确性及是否符合实际意义。,总结,课前回顾,(1)增长率问题,(2)降低率问题,课前回顾,例1 如图甲,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成。

7、2.3 用公式法求解一元二次方程,第二章 一元二次方程,第2课时 利用一元二次方程解决面积问题,导入新课,讲授新课,当堂练习,课堂小结,1.能够建立一元二次方程模型解决有关面积的问题. (重点、难点) 2.能根据具体问题的实际意义检验结果的合理性.(难点),学习目标,问题1:解一元二次方程我们学过哪几种方法?,直接开平方法 ,配方法,公式法 .,问题2:请某小区规划在一个长30m、宽20m的长方形土地上修建三条等宽的通道,使其中两条与AB平行,另外两条与AD平行,其余部分种花草,要使每一块花草的面积都为78m2,那么通道宽应该设计为多少?设。

8、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(1),因式分解法 开平方法 配方法 公式法,解一元二次方程的四种方法:,课前回顾,例1 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.当每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?,情境导入,学了这么多方法,我们来试着将它们应用到生活中吧!,审题:理解题意。 设元(未知数)。 用含未知数的代数式表示相关的量。 。

9、2.1 认识一元二次方程,第二章 一元二次方程,第1课时 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.了解一元二次方程的概念;(重点) 2.掌握一元二次方程的一般形式ax2+bx+c=0(a, b, c为常数,a0). (重点) 3.能根据具体问题的数量关系,建立一元二次方程的模型.(难点),学习目标,导入新课,复习引入,没有未知数,代数式,一元一次方程,二元一次方程,不等式,分式方程,2.什么叫方程?我们学过哪些方程?,含有未知数的等式叫做方程.,我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.,3.什么叫。

10、2.2 用配方法求解一元二次方程,第二章 一元二次方程,第2课时 用配方法求解较复杂的一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.会用配方法解二次项系数不为1的一元二次方程;.(重点) 2.能够熟练地、灵活地应用配方法解一元二次方程.(难点),学习目标,问题:用配方法解一元二次方程(二次项系数为1)的步骤是什么?,步骤:(1)将常数项移到方程的右边,使方程的左边只含二 次项和一次项;(2)两边都加上一次项系数一半的平方.(3)直接用开平方法求出它的解.,导入新课,问题1:观察下面两个是一元二次方程的联系和区别: x2 + 6x。

11、2.2 用配方法求解一元二次方程,第二章 一元二次方程,第1课时 用配方法求解简单的一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.会用直接开平方法解形如(x+m)2n (n0)的方程.(重点) 2.理解配方法的基本思路.(难点) 3.会用配方法解二次项系数为1的一元二次方程.(重点),学习目标,填一填: 1.如果 x2 = a,那么 x= . 2.若一个数的平方等于9,则这个数是 ;若一个数的平方等于7,则这个数是 . 3.完全平方式:式子a2 2ab +b2叫完全平方式,且a2 2ab +b2 = .,3,(ab),导入新课,例1:用直接开平方法解下面一元二次方程.(1)x2 = 5; (2)2x2。

12、2.3 用公式法求解一元二次方程,第二章 一元二次方程,第1课时 用公式法求解一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.理解一元二次方程求根公式的推导过程. 2.会用公式法解一元二次方程.(重点) 3.会用根的判别式b2- 4ac判断一元二次方程根的情况及相关应用(难点),问题:说一说用配方法解系数不为1的一元二次方程的步骤?,基本步骤如下: 将二次项系数化为1. 将常数项移到方程的右边,是左边只有二次项和一次项. 两边都加上一次项系数一半的平方. 直接用开平方法求出它的解.,导入新课,做一做:你能用配方法解方程 a。

【2.3用公式法求解一元二次方】相关PPT文档
【2.3用公式法求解一元二次方】相关DOC文档
标签 > 2.3用公式法求解一元二次方程第1课时课件[编号:159033]