2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版)

上传人:hua****011 文档编号:90654 上传时间:2019-10-12 格式:DOCX 页数:15 大小:296.72KB
下载 相关 举报
2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版)_第1页
第1页 / 共15页
2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版)_第2页
第2页 / 共15页
2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版)_第3页
第3页 / 共15页
2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版)_第4页
第4页 / 共15页
2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版)_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、2019湖南省11地市中考数学7大专题分类解析汇编专题03 函数一、选择题1(2019湖南益阳)下列函数中,y总随x的增大而减小的是()Ay4xBy4xCyx4Dyx22(2019湖南娄底)一次函数 y=kxk(k0)的图象大致是( )A BC D3(2019湖南邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2下列说法中错误的是()Ak1=k2 Bb1b2 Cb1b2 D当x=5时,y1y24(2019湖南衡阳)如图,一次函数y1kx+b(k0)的图象与反比例函数y2(m为常数且m0)的图象都经过A(1,2),B

2、(2,1),结合图象,则不等式kx+b的解集是()Ax1B1x0Cx1或0x2D1x0或x25(2019湖南株洲)如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y(k0)上不同的三点,连接OA、OB、OC,过点A作ADy轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记AOD、BOM、四边形CMEF的面积分别为S1、S2、S3,则()AS1S2+S3BS2S3CS3S2S1DS1S2S326(2019湖南益阳)已知二次函数yax2+bx+c的图象如图所示,下列结论:ac0,b2a0,b24ac0,ab+c0,正确的是()ABCD7(2019湖南岳阳)

3、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点如果二次函数yx2+2x+c有两个相异的不动点x1、x2,且x11x2,则c的取值范围是()Ac3Bc2CcDc18(2019湖南衡阳)如图,在直角三角形ABC中,C90,ACBC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与ABC的重叠部分面积为S则S关于t的函数图象大致为()ABCD二、填空题9(2019湖南株洲)若二次函数yax2+bx的图象开口向下,则a 0(填“”或“”或“”)10(201

4、9湖南娄底)如图,M 为反比例函数 y=的图象上的一点,MA 垂直 y 轴,垂足为 A, MAO 的面积为 2,则 k 的值为 11(2019湖南益阳)反比例函数y的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k 12(2019湖南郴州)某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为 瓶13(2019湖南邵阳)如图,在平面直角坐标系中,点A的坐标为(-4, 2),反比例函数(x0)的图象经过线段OA的中点B,则k= 14(

5、2019湖南张家界)如图,在平面直角坐标系中,菱形OABC的顶点O为坐标原点,顶点A在x轴的正半轴上,顶点C在反比例函数y的图象上,已知菱形的周长是8,COA60,则k的值是 15(2019湖南郴州)如图,点A,C分别是正比例函数yx的图象与反比例函数y的图象的交点,过A点作ADx轴于点D,过C点作CBx轴于点B,则四边形ABCD的面积为 16(2019湖南衡阳)在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA1x轴交抛物线于点A1,过点A1作A1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4,依次进

6、行下去,则点A2019的坐标为 三、解答题17(2019湖南岳阳)如图,双曲线y经过点P(2,1),且与直线ykx4(k0)有两个不同的交点(1)求m的值(2)求k的取值范围18(2019湖南常德)如图,一次函数yx+3的图象与反比例函数y(k0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C(1)求反比例函数的解析式;(2)若点P在x轴上,且APC的面积为5,求点P的坐标19(2019湖南湘西州)如图,一次函数ykx+b的图象与反比例函数y的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB4(1)求函数y和ykx+b的解析式;(2)结合图象直接写出不等式组0kx+b

7、的解集20(2019湖南常德)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算21(2019湖南郴州)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数下面我们参照学习函数的过程与方法,探究分段函数y的图象与性质列表:x3210123y121012描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示(1)如图,在平面直角坐标系中,观察描出的

8、这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:点A(5,y1),B(,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1 x2;(填“”,“”或“”)当函数值y2时,求自变量x的值;在直线x1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3y4,求x3+x4的值;若直线ya与函数图象有三个不同的交点,求a的取值范围22(2019湖南娄底)如图,抛物线 y=x2+mx+(m1)与 x 轴交于点 A(x1,0),B(x2,0), x1x2,与 y 轴交于点 C(0,c),且满足 x12+x22+x1x2=7(1)求抛物线的解析式

9、;(2)在抛物线上能不能找到一点 P,使POC=PCO?若能,请求出点 P 的坐标;若不能,请说明理由23(2019湖南株洲)如图所示,在平面直角坐标系Oxy中,等腰OAB的边OB与反比例函数y(m0)的图象相交于点C,其中OBAB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CHx轴于点H(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OCAP,过点P作PQx轴于点Q,连结OP,记OPQ的面积为SOPQ,设AQt,TOH2SOPQ用t表示T(不需要写出t的取值范围);当T取最小值时,求m的值24(2019湖南常德)如图,已知二次函数图象

10、的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(1,0)(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由25(2019湖南郴州)已知抛物线yax2+bx+3与x轴分别交于A(3,0),B(1,0)两点,与y轴交于点 C(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点如

11、图1,设k,当k为何值时,CFAD?如图2,以A,F,O为顶点的三角形是否与ABC相似?若相似,求出点F的坐标;若不相似,请说明理由26(2019湖南衡阳)如图,二次函数yx2+bx+c的图象与x轴交于点A(1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB请问:MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若

12、不存在,请说明理由27(2019湖南怀化)如图,在直角坐标系中有RtAOB,O为坐标原点,OB1,tanABO3,将此三角形绕原点O顺时针旋转90,得到RtCOD,二次函数yx2+bx+c的图象刚好经过A,B,C三点(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:ykxk+3与二次函数图象相交于M,N两点若SPMN2,求k的值;证明:无论k为何值,PMN恒为直角三角形;当直线l绕着定点Q旋转时,PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式28(2019湖南邵阳)如图,二次函数y=x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析

13、式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t0)过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形若能,请求出t的值;若不能,请说明理由29(2019湖南益阳)在平面直角坐标系xOy中,顶点为A的抛物线与

14、x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0)(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA,作DEOA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,)30(2019湖南张家界)已知抛物线yax2+bx+c(a0)过点A(1,0),B(3,0

15、)两点,与y轴交于点C,OC3(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AMBC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由31(2019湖南株洲)已知二次函数yax2+bx+c(a0)(1)若a1,b2,c1求该二次函数图象的顶点坐标;定义:对于二次函数ypx2+qx+r(p0),满足方程yx的x的值叫做该二次函数的“不动点”求证:二次函数yax2+bx+c有两个不同的“不动点”(2)设bc3,如

16、图所示,在平面直角坐标系Oxy中,二次函数yax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x10,x20,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OCOD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足AFCABCFA的延长线与BC的延长线相交于点P,若,求二次函数的表达式32(2019湖南岳阳)如图1,AOB的三个顶点A、O、B分别落在抛物线F1:yx2+x的图象上,点A的横坐标为4,点B的纵坐标为2(点A在点B的左侧)(1)求点A、B的坐标;(2)将AOB绕点O逆时针旋转90得到AOB,抛物线F2:yax2+b

17、x+4经过A、B两点,已知点M为抛物线F2的对称轴上一定点,且点A恰好在以OM为直径的圆上,连接OM、AM,求OAM的面积;(3)如图2,延长OB交抛物线F2于点C,连接AC,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与OAC相似若存在,请求出点D的坐标;若不存在,请说明理由33(2019湖南湘西州)如图,抛物线yax2+bx(a0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,BAD的平分线AM交BC于点M,点N是CD的中点,已知OA2,且OA:AD1:3(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 分类汇编