ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:296.72KB ,
资源ID:90654      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-90654.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年湖南省中考数学真题分类汇编 专题3 函数(原卷版)

1、2019湖南省11地市中考数学7大专题分类解析汇编专题03 函数一、选择题1(2019湖南益阳)下列函数中,y总随x的增大而减小的是()Ay4xBy4xCyx4Dyx22(2019湖南娄底)一次函数 y=kxk(k0)的图象大致是( )A BC D3(2019湖南邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2下列说法中错误的是()Ak1=k2 Bb1b2 Cb1b2 D当x=5时,y1y24(2019湖南衡阳)如图,一次函数y1kx+b(k0)的图象与反比例函数y2(m为常数且m0)的图象都经过A(1,2),B

2、(2,1),结合图象,则不等式kx+b的解集是()Ax1B1x0Cx1或0x2D1x0或x25(2019湖南株洲)如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y(k0)上不同的三点,连接OA、OB、OC,过点A作ADy轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记AOD、BOM、四边形CMEF的面积分别为S1、S2、S3,则()AS1S2+S3BS2S3CS3S2S1DS1S2S326(2019湖南益阳)已知二次函数yax2+bx+c的图象如图所示,下列结论:ac0,b2a0,b24ac0,ab+c0,正确的是()ABCD7(2019湖南岳阳)

3、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点如果二次函数yx2+2x+c有两个相异的不动点x1、x2,且x11x2,则c的取值范围是()Ac3Bc2CcDc18(2019湖南衡阳)如图,在直角三角形ABC中,C90,ACBC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与ABC的重叠部分面积为S则S关于t的函数图象大致为()ABCD二、填空题9(2019湖南株洲)若二次函数yax2+bx的图象开口向下,则a 0(填“”或“”或“”)10(201

4、9湖南娄底)如图,M 为反比例函数 y=的图象上的一点,MA 垂直 y 轴,垂足为 A, MAO 的面积为 2,则 k 的值为 11(2019湖南益阳)反比例函数y的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k 12(2019湖南郴州)某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为 瓶13(2019湖南邵阳)如图,在平面直角坐标系中,点A的坐标为(-4, 2),反比例函数(x0)的图象经过线段OA的中点B,则k= 14(

5、2019湖南张家界)如图,在平面直角坐标系中,菱形OABC的顶点O为坐标原点,顶点A在x轴的正半轴上,顶点C在反比例函数y的图象上,已知菱形的周长是8,COA60,则k的值是 15(2019湖南郴州)如图,点A,C分别是正比例函数yx的图象与反比例函数y的图象的交点,过A点作ADx轴于点D,过C点作CBx轴于点B,则四边形ABCD的面积为 16(2019湖南衡阳)在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA1x轴交抛物线于点A1,过点A1作A1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4,依次进

6、行下去,则点A2019的坐标为 三、解答题17(2019湖南岳阳)如图,双曲线y经过点P(2,1),且与直线ykx4(k0)有两个不同的交点(1)求m的值(2)求k的取值范围18(2019湖南常德)如图,一次函数yx+3的图象与反比例函数y(k0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C(1)求反比例函数的解析式;(2)若点P在x轴上,且APC的面积为5,求点P的坐标19(2019湖南湘西州)如图,一次函数ykx+b的图象与反比例函数y的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB4(1)求函数y和ykx+b的解析式;(2)结合图象直接写出不等式组0kx+b

7、的解集20(2019湖南常德)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算21(2019湖南郴州)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数下面我们参照学习函数的过程与方法,探究分段函数y的图象与性质列表:x3210123y121012描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示(1)如图,在平面直角坐标系中,观察描出的

8、这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:点A(5,y1),B(,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1 x2;(填“”,“”或“”)当函数值y2时,求自变量x的值;在直线x1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3y4,求x3+x4的值;若直线ya与函数图象有三个不同的交点,求a的取值范围22(2019湖南娄底)如图,抛物线 y=x2+mx+(m1)与 x 轴交于点 A(x1,0),B(x2,0), x1x2,与 y 轴交于点 C(0,c),且满足 x12+x22+x1x2=7(1)求抛物线的解析式

9、;(2)在抛物线上能不能找到一点 P,使POC=PCO?若能,请求出点 P 的坐标;若不能,请说明理由23(2019湖南株洲)如图所示,在平面直角坐标系Oxy中,等腰OAB的边OB与反比例函数y(m0)的图象相交于点C,其中OBAB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CHx轴于点H(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OCAP,过点P作PQx轴于点Q,连结OP,记OPQ的面积为SOPQ,设AQt,TOH2SOPQ用t表示T(不需要写出t的取值范围);当T取最小值时,求m的值24(2019湖南常德)如图,已知二次函数图象

10、的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(1,0)(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由25(2019湖南郴州)已知抛物线yax2+bx+3与x轴分别交于A(3,0),B(1,0)两点,与y轴交于点 C(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点如

11、图1,设k,当k为何值时,CFAD?如图2,以A,F,O为顶点的三角形是否与ABC相似?若相似,求出点F的坐标;若不相似,请说明理由26(2019湖南衡阳)如图,二次函数yx2+bx+c的图象与x轴交于点A(1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB请问:MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若

12、不存在,请说明理由27(2019湖南怀化)如图,在直角坐标系中有RtAOB,O为坐标原点,OB1,tanABO3,将此三角形绕原点O顺时针旋转90,得到RtCOD,二次函数yx2+bx+c的图象刚好经过A,B,C三点(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:ykxk+3与二次函数图象相交于M,N两点若SPMN2,求k的值;证明:无论k为何值,PMN恒为直角三角形;当直线l绕着定点Q旋转时,PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式28(2019湖南邵阳)如图,二次函数y=x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析

13、式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t0)过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形若能,请求出t的值;若不能,请说明理由29(2019湖南益阳)在平面直角坐标系xOy中,顶点为A的抛物线与

14、x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0)(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA,作DEOA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,)30(2019湖南张家界)已知抛物线yax2+bx+c(a0)过点A(1,0),B(3,0

15、)两点,与y轴交于点C,OC3(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AMBC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由31(2019湖南株洲)已知二次函数yax2+bx+c(a0)(1)若a1,b2,c1求该二次函数图象的顶点坐标;定义:对于二次函数ypx2+qx+r(p0),满足方程yx的x的值叫做该二次函数的“不动点”求证:二次函数yax2+bx+c有两个不同的“不动点”(2)设bc3,如

16、图所示,在平面直角坐标系Oxy中,二次函数yax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x10,x20,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OCOD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足AFCABCFA的延长线与BC的延长线相交于点P,若,求二次函数的表达式32(2019湖南岳阳)如图1,AOB的三个顶点A、O、B分别落在抛物线F1:yx2+x的图象上,点A的横坐标为4,点B的纵坐标为2(点A在点B的左侧)(1)求点A、B的坐标;(2)将AOB绕点O逆时针旋转90得到AOB,抛物线F2:yax2+b

17、x+4经过A、B两点,已知点M为抛物线F2的对称轴上一定点,且点A恰好在以OM为直径的圆上,连接OM、AM,求OAM的面积;(3)如图2,延长OB交抛物线F2于点C,连接AC,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与OAC相似若存在,请求出点D的坐标;若不存在,请说明理由33(2019湖南湘西州)如图,抛物线yax2+bx(a0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,BAD的平分线AM交BC于点M,点N是CD的中点,已知OA2,且OA:AD1:3(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离