1、专题09 图形的性质之填空题一填空题(共12小题)1(2019台州)如图,直线l1l2l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若ABC90,BD4,且,则m+n的最大值为 2(2019绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是 3(2019绍兴)如图,在直线AP上方有一个正方形ABCD,PAD30,以点B为圆
2、心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则ADE的度数为 4(2019温州)三个形状大小相同的菱形按如图所示方式摆放,已知AOBAOE90,菱形的较短对角线长为2cm若点C落在AH的延长线上,则ABE的周长为 cm5(2019湖州)已知一条弧所对的圆周角的度数是15,则它所对的圆心角的度数是 6(2019杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2(结果精确到个位)7(2019台州)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点
3、E在边BC上,连接AE若ABC64,则BAE的度数为 8(2019嘉兴)如图,在O中,弦AB1,点C在AB上移动,连结OC,过点C作CDOC交O于点D,则CD的最大值为 9(2019温州)如图,O分别切BAC的两边AB,AC于点E,F,点P在优弧()上,若BAC66,则EPF等于 度10(2019宁波)如图,RtABC中,C90,AC12,点D在边BC上,CD5,BD13点P是线段AD上一动点,当半径为6的P与ABC的一边相切时,AP的长为 11(2019舟山)如图,一副含30和45角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC12cm当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动当点E从点A滑动到点C时,点D运动的路径长为 cm;连接BD,则ABD的面积最大值为 cm212(2019湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是