1、一元一次不等式(组)聚焦考点温习理解一、不等式的概念1、不等式用不等号表示不等关系的式子,叫做不等式。2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的 集合,简称这个不等式的解集。求不等式的解集的过程,叫做解不等式。3、用数轴表示不等式的方法二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。三、一元一次不等式1、一元一次
2、不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将 x 项的系数化为 1四、一元一次不等式组 1、一元一次不等式组的概念来源:ZXXK几个一元一次不等式合在一起,就组成了一个一元一次不等式组。几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。求不等式组的解集的过程,叫做解不等式组。当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。2、一元一次不等式组的解法(1)分
3、别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分, 即这个不等式组的解集。名师点睛典例分类考向一:不等式的基本性质典例 1:(2018宿迁)若 ba,则下列结论不一定成立的是( )A ba B 2 C 3baD 2ba来源:Z 。xx。k.Com考向二:不等式(组)的解法及数轴表示解集典例 2:(2018聊城)已知不等式41232xx,其解集在数轴上表示正确的是( )考向三:由不等式(组)的解集确定特定值典例 3:(2017遵义)不等式 64x3x8 的非负整数解为( ) A. 2 个 B. 3 个 C.4 个 D.5 个考向四:解不等式组典例 4:(2017天门)
4、解不等式组 ,并把它的解集 在数轴上表示出来 考向五:由不等式(组)的解集确定字母的值或范围典例 5:(2017佳木斯)已知关于 x 的分式方程 = 的解是非负数, 那么 a 的取值范围是( ) A. a1 B. a1 C. a1且 a9 D. a1考向六:列一元一次不等式(组)解决实际问题典例 6: (2017孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有 A,B 两种型号的健身器材可供选择 (1 )劲松公司 2015 年每套 A 型健身器材的售价为 2.5 万元,经过连续两年降价,2017 年每套售价为 1.6 万元,求每套 A 型健身器材年
5、平均下降率 n; (2 ) 2017 年市政府经过招标,决定年内采购并安装劲松公司 A,B 两种型号 的健身器材共80 套,采购专项经费总计不超过 112 万元,采购合同规定:每套 A 型健身器材售价为 1.6万元,每套 B 型健身器材售价为 1.5(1 n)万元 A型健身器材最多可购买多少套?安装完成后,若每套 A 型和 B 型健身器材一年的养护费分别是购买价的 5%和 15%,市政府计划支出 10 万元进行养护,问该计划支出能否满足一年的养护需要? 课时作业能力提升1 (2018株洲) 下列哪个选项中的不等式与不等式 5x8 +2x 组成的不等式组的解集为38 x5( )A x+50 B2
6、 x10 C3 x-150 D- x-50 2 (2018眉山)已知关于 x 的不等式组2()5a仅有三个整数解,则 a 的取值范围是( )A1 a1 B 2 a1 C 21 a1 D a13 (2018恩施)关于 x 的不等式组 40x的解集为 x3,那么 a 的取值范围为( )A a B 3a C 3a D 4 (2018南宁) 若 m n,则下列不等式正确的是( )A m2 n2 B C6 m6 n D8 m8 nm4 n45 (2018仙桃)若关于 x的一元一次不等式组3(1)9x的解集是 3x,则的取值范围是( )A 4 B 4 C 4 D 46 (2017包头)若关于 x 的不等式
7、 x 1 的解集为 x1 ,则关于 x 的一元二次方程x2+ax+1=0 根的情况是( ) A. 有两个相等的实数根 B. 有两个不相等的实数根 C. 无实数根 D. 无法确定7 (2018呼和浩特)若满足12 x1 的任意实数 x,都能使不等式 2x3-x2-mx2 成立,则实数 m 的取值范围是( )A.m-1 B.m-5 C.m-4 D.m-4二、填空题8 ( 2018贵阳) 已知关于 x 的不等式组 5310xa, 无解,则 a 的取值范围是 .9 ( 2018凉山州)若不等式组 2b的解集是-13;解不等式 xm1 得:xm1,所以 m13,即 4故选 B6 ( 2017包头)若关于
8、 x 的不等式 x 1 的解集为 x1 ,则关于 x 的一元二次方程x2+ax+1=0 根的情况是( ) A. 有两个相等的实数根 B. 有两个不相等的实数根 C. 无实数根 D. 无法确定【分析】先解不等式,再利用不等式的解集得到 1+ =1,则 a=0,然后计算判别式的值,最后根据判别式的意义判断方程根的情况【解答】解:解不等式 x 1 得 x1+ , 而不等式 x 1 的解集为 x1,所以 1+ =1,解得 a=0,又因为=a24=4,所以关于 x 的一元二次方程 x2+ax+1=0 没有实数根故选 C7 (2018呼和浩特)若满足 x1 的任意实数 x,都能使不等式 2x3-x2-mx
9、2 成立,12则实数 m 的取值范围是( )A.m-1 B.m-5 C.m-4 D.m-4【分析】考查不等式性质与二次函数性质 来源:Zxxk.Com二、填空题8 ( 2018贵阳) 已知关于 x 的不等式组 无解,则 a 的取值范围是 .来源:ZXXK5310xa,【分析】本题主要考查了数轴上表示不等式的解集。根据数轴上表示不等式的解集表示方法进行判别即可得到结论 【解答】解:解关于 x 的不等式组 得 由于该不等式组无解,根据“ 小5310xa, 2.a,小,大大无解”,所以 a2. 答案:a29 ( 2018凉山州)若不等式组 的解集是-1 x1,则( a+b) 2009= .0xb【分
10、析】因为 x=3 是不等式的一个解,所以将 x=3 代入不等式,求出 a 的取值范围为a 4,则可取的最小正整数就为 5,该题可解【解答】解:解不等式组,得可以用含 a、 b 的式子表示的解集,为 a+2x ,已知解集为2b-1x1, ,解得 ,代入代数式,可以求出原式=-1.故答案为:-1 12b2310 ( ( 2018龙东) 若关于 x 的一元一次不等式组 有 3 个整数解,则 a0125xa,的取值范围是_三、解答题 11 (2018湖州) 解 不等式 2,并把它的解表示在数轴上32x【分析】:先去分母,然后移项、合并同类项,把未知数的系数化为 1,再用数轴表示出解集即可.【解答】解:
11、不等式的两边乘以 2,得 3 x24 移项,合并同类型,得 3 x6解得 x2这个不等式的解表示在数轴上如下图所示: 1234 123012 .(2018永州)解不等式组 ,并把解集在数轴上表示出来)(xx【分析】分别解各个不等式,再求公共解集,然后在数轴上把解集表示出来【解答】解:解不等式 2(x-1)+1x+2 得 x3 ,解不等式 得 x1,2x所以原不等式组的解集为1x 3,在数轴上表示如下:13( 2018荆州)求不等式组 的整数解; 412x【分析】 (1)先分别解不等式组中的每个不等式,然后确定不等式组的解集,从中选出整数解;【解答】解:解不等式得 x1;解不等式得 x1;不等式
12、组的解集为:1 x1,不等式组的整数解为:1 和 0.14 (2018永州)甲从商贩 A 处购买了若干斤西瓜,乙从商贩 B 处购买了若干斤西瓜,A、 B 两处所购买 的西瓜重量之比为 32,然后将买回的西瓜以从 A、 B 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,请说明他赔钱的原因【分析】利用作差法,借助不等式性质进行说明15 ( 2018昆明)水是人类生命之源为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策若居民每户每月用水量不超过 10 立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价基本水价污水处理费) ;若每户每月用水量超过 10 立方米
13、,则超过部分每立方米在基本水价基础上加价 100%,每立方米污水处理费不变甲用户 4 月份用水 8 立方米,缴水费 27.6 元;乙用户 4 月份用水 12 立方米,缴水费46.3 元(注:污水处理的立方数实际生活用水的立方数)(1 )求每立方米的基本水价和每立方米的污水处理费各是多少元?(2 )如果某 用户 7 月份生活用水水费计划不超过 64 元,该用户 7 月份最多可用水多少立方米?【分析】 (1)设每立方米的基本水价是 x 元,每立方米的污水处理费是 y元,根据甲用水8 立方米没超过 10 立方米及乙用水 12 立方米超过 10 立方米的两种不同计费方式列二元一次方程组解决问题 (2)
14、问题中蕴涵 “不 超过” 、 “最多”表达不等关系的词语启示用一元一次不等式解决可以设某用户 7 月份生活用水是 m 立方米,根据(1 )中乙用户用水超过 10 立方米的计费方式列出不等式 【解答】解:(1)设每立方米的基本水价是 x 元,每立方米的污水处理费是 y 元,根据题意,得 解得827.61010%246.3xyy, , 2.451xy,答:每立方米的基本水价是 2.45 元,每立方米的污水处理费是 1 元(2 )设该用户 7 月份生活用水是 m 立方米,根据题意,得 10(2.451)(m10)(1 100%)2.451 64,解得 m15答:该用户 7 月份最多可用水 15 立方
15、米16 ( 2018苏州)某学校准备购买若干台 A 型电脑和 B 型打印机如果购买 1 台 A 型电脑,2 台 B 型打印机,一共需要花费 5900 元;如果购买 2 台 A 型电脑,2 台 B 型打印机,一共需要花费 9400 元(1 )求每台 A 型电脑和每台 B 型打印机的价格分别是多少元?(2 )如果学校购买 A 型电脑和 B 型打印机的预算费用不超过 20000 元,并且购买 B 型打印机的台数要比购买 A 型电脑的台数多 l 台,那么该学校至多能购买多少台 B 型打印机? 【分析】 (1)由如果购买 1 台 A 型电脑,2 台 B 型打印机,一共需要花费 5900 元;如果购买 2 台 A 型电脑,2 台 B 型打印机,一共需要花费 9400 元可列出方程组求解;(2)设学校购买胛台 B 型打印机,则购买 A 型电脑为(n l)台 ,列 出不等式 3500(n1)1200n20000 可求解