数学培优

第1次(1)刺猬在小狗的()面;(2)梅花鹿在小狗的()面;(3)小猫在小狗的()面;(4)小猴在小狗的()面;(5)小狗在小猴的()面;(6)小猴在梅平面几何基础聚焦考点温习理解一、直线、射线和线段1、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。2、射线的

数学培优Tag内容描述:

1、整式与因式分解 聚焦考点温习理解来源:1.代数式:代数式是用 (加、减、乘、除、乘方、开方)把 或表示 的 连接而成的式式,单独一个数或一个字母也是代数式2代数式的值:用数值代替代数式里的 ,计算后所得的结果3列代数式:列代数式时关键是弄清 关系和 顺序,正确使用 ,原则上先读的先写,规范书写4由数与字母的 组成的代数式叫做单项式,单独一个数或一个 也是单项式单项式中的 因数叫做这个单项式的系数,单项式中的所有字母的 叫做这个单项式的次数 5几个单项式的 叫做多项式多项式中,如果字母相同,相同字母的指数也分别相同的每。

2、统计知识初步聚焦考点温习理解一、平均数 1、平均数的概念(1 )平均数:一般地,如果有 n 个数 那么, 叫做,21nx )(12nxx这 n 个数的平均数, 读作“x 拔” 。(2 )加权平均数:如果 n 个数中, 出现 次, 出现 次, 出现 次(这1xf2xfkxkf里 ) ,那么,根据平均数的定义,这 n 个数的平均数可以表示为ffk21,这样求得的平均数 叫做加权平均数,其中 叫nfxxkxkff,21做权。2、平均数的计算方法(1 )定义法当所给数据 比较分散时,一般选用定义公式:,21nx )(12nxxn(2 )加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:。

3、一元一次不等式(组)聚焦考点温习理解一、不等式的概念1、不等式用不等号表示不等关系的式子,叫做不等式。2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的 集合,简称这个不等式的解集。求不等式的解集的过程,叫做解不等式。3、用数轴表示不等式的方法二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

4、全等三角形 聚焦考点温习理解1、全等三角形的对应边相等, 对应角相等2、全等三角形的判定方法有:(1)、三边分别相等的两个三角形全等,简写成边边边或 SSS(2)、两边和它们的夹角分别相等的两个三角形全等,简写成边角边或 SAS(3)、两角和它们的夹边分别相等的两个三角形全等,简写成角边角或 ASA(4)、两角和其中一个角的对边分别相等的两个三角形全等,简写成角角边或 AAS(5)、对于直角三角形,除了上述四种判定方法外,还有斜边和一条直角边分别相等的两个直角三角形全等,即简写为斜边直角边或 HL名师点睛典例分类考向一:全等三角形的。

5、与圆有关的位置关系聚焦考点温习理解一、点和圆的位置关系设O 的半径是 r,点 P 到圆心 O 的距离为 d,则有:dr 点 P 在O 外。二、直线与圆的位置关系直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果O 的半径为 r,圆心 O 到直线 l 的距离为 d,那么:直线 l 与O 相交 = dr;切线的判定和性质 : (1) 、切线的。

6、实数聚焦考点温习理解1. 实数: 和 统称为实数有理数分为 和 ,无理数是指 2. 数轴:规定了 、 、 的直线称为数轴。实数和数轴上的点是一一对应的关系。3. 相反数:只有符号不同的两个数叫做互为相反数,零的相 反数是零,从数轴上看,互为相反数的两个数所对应的点关于原点对称对称,如果 a 与 b 互为相反数,则有 4. 绝对值:一个数的绝对值就是表示 ,| a|0。零的绝对值时它本身,也可看成它的相反数,若 a0,则|a|= ;若 a0,则|a |= 。正数大于零,负数小 于零,正数大于一切负数,两个负数,绝对值大的反而小。5. 倒数:如果 a 与 b。

7、特殊三角形 聚焦考点温习理解1、等腰三角形:(1 ) 概念:有两条边相等的三角形是等腰三角形(2 ) 性质:等腰三角形是轴对称图形,一般有一条对称轴;等腰三角形的两底角相等(简写成“等边对等角” ) ;等腰三角形的顶角的平分线、底边上的高和底边上的中线相互重合(简写成“三线合一” )(3 ) 判定:等角对等边2、等边三角形的性质:等边三角形有三条对称轴;三个内角都为 60;判定一个三角形是等边三角形的方法有两种:一是直接证三个内角都相等;二是先证它是等腰三角形,再证一个内角是 603、线段垂直平分线上一点到这条线段的。

8、与圆有关的计算聚焦考点温习理解一、正多边形与圆1. 正多边形的半径:正多边形外接圆的半径。2. 正多边形的边心距:正多边形内切圆的半径。3. 正多边形的中心角:正多边形每一条边所对的圆心角=018n。4. 正 n 边形的 n 条半径把正 n 边形分成 n 个全等的等腰三角形,每个等腰三角形又被相应的边心距分成两个全等的直角三角形。二、弧长和扇形面积1、弧长公式n的圆心角所对的弧长 l 的计算公式为 180rnl2、扇形面积公式 lRnS21360扇其中 n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。3、圆锥的侧面积 rllS21其中 l 是圆锥的母线。

9、四边形聚焦考点温习理解1、多边形:n 边形的内角和 180)2(n,外角和为 360;在平面内,各内角相等,各边也都相等的多边形叫正多边形;在多边形中,连接互不相邻的两个顶点的线段叫做多边形的对角线,从 n 边形的一个顶点可以引(n-3)条对角线,这些对角线将 n 边形分成(n-2)个三角形,边形共有 2)3(条对角线2、平行四边形(1)、定义:两组对边分别平行的四边形叫做平行四边形(2)、表示方法:用“ ”表示平行四边形,例如平行四边形 ABCD 记作: ABCD,读作:平行四边形 ABCD3、平行四边形的性质:(1)、边:平行四边形的两组对边分别相等。

10、与圆有关的概念聚焦考点温习理解1、圆的定义在一个个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径。2、弦连接圆上任意两点的线段叫做弦。 (如图中的 AB)3.直径经过圆心的弦叫做直径。 (如图中的 CD)直径等于半径的 2 倍。4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“”表示,以 A,B 为端点的弧记作“ ”,读作“圆弧 AB”或“弧 AB”。大于半圆的。

11、数据的收集与处理 聚焦考点温习理解一、调查方式1.普查:为了某一特定目的,而对考察对象进行全面的调查,叫普查.2.抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.二、总体、个体、样本及样本容量(1)总体:把所要考察对象的全体叫总体(2)个体:每一个考察对象叫做个体(3)样本:从总体中所抽取的一部分个体叫做总体的一个样本(4)样本容量:样本中个体的数目叫做样本容量三、平均数(1 )平均数:一般地,如果有 n 个数 ,21nx 那么,)(2nxxn叫做这 n 个数的平均数, 读作“x 拔” 。(2 )加权平均数:如果 n 个数。

12、位置与坐标 聚焦考点温习理解1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;两轴的交点 O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表示,其顺。

13、一元二次方程 聚焦考点温习理解一、一元二次方程及有关概念1. 一元二次方程:只含有一个未知数(一元 ) ,并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax 2+bx+c=0(其中 a、b、c 为常数,a0),其中 ax2、bx、c 分别叫做二次项、一次项和常数项,a、b 分别称为二次项系数和一次项系数.3. 一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有 1 个 未知数;(3)所含未知数的最高次数是 2.【温馨提示】在一元二次方程的一般形式中要注意 a0.因为当 a=0 时,不含有二次项,即不 是一元二次方程.4。

14、矩形、菱形、正方形 聚焦考点温习理解一、矩形 1、矩形的概念有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1 )具有平行四边形的一切性质(2 )矩形的四个角都是直角(3 )矩形的对角线相等(4 )矩形是轴对称图形3、矩形的判定(1 )定义:有一个角是直角的平行四边形是矩形(2 )定理 1:有三个角是直角的四边形是矩形(3 )定理 2:对角线相等的平行四边形是矩形4、矩形的面积S 矩形 =长宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1 )具有平行四边形的一切性质(2 )菱形的四条边相等(3 。

15、三角形 聚焦考点温习理解一、三角形 1、三角形中的主要线段(1 )三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2 )在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3 )从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高) 。2、三角形的三边关系定理及推论(1 )三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2 )三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角。

16、图形的轴对称 聚焦考点温习理解1如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点2图形轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线轴对称图形的对称轴,是任意一对对应点所连线段的垂直平分线对应线段、对应角相等3由一个平面图形可以得到它关于一条直线 l 对称的图形,这个图形。

17、解直角三角形 聚焦考点温习理解一、锐角三角函数的定义在 RtABC 中,C90,ABc,BC a,AC b正弦:sinA A的 对 边斜 边 ac余弦:cos A A的 邻 边斜 边 bc余切:tanA A的 对 边A的 邻 边 ab二、特殊角的三角函数值 sin cos tan30 1232345 160 32123三、解直角三角形解直角三角形的常用关系在 RtABC 中,C90,则:(1)三边关系: a2 b2c 2;(2)两锐角关系:AB90;(3)边与角关系:sinA cosB ac, cosAsinB bc,tanA a;(4)sin2A cos2A1四、解直角三角形的应用常用知识1. 仰角和俯角:仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做。

18、一次方程聚焦考点温习理解1. 等式:性质 1:等式两边都加上或减去同一个数或式 ,其结果仍是等式;性质 2:等式两边都乘以或除以同一个数(式) (除数或除式不为 0) ,其结果仍是等式2. 含有未知数的等式叫方程,如果将一个未知数的值代入方程,左右两边相等时,这个值叫做方程的解3. 解方程实际是就是运用等式的基本性质对方程进行化变形4. 元一次方程一般形式是: )0(abx最简形式是: )0(abx5. 解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化 16. 方程的解的情况:当时 ,方程 x的解是 ;当 a=0,b0 时,方程。

19、平面几何基础聚焦考点温习理解一、直线、射线和线段 1、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。2、射线的概念直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。3、线段的概念直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。4、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无。

20、第 1 次(1)刺猬在小狗的( )面;(2)梅花鹿在小狗的( )面;(3)小猫在小狗的( )面;(4)小猴在小狗的( )面;(5)小狗在小猴的( )面; (6)小猴在梅花鹿的( )面。小华从家向( )面走,又向( )方向走,能到便民超市。第 2 次1、同学们到果园里去采摘,女同学有 36 人,男同学有 54 人。如果 3 个同学分成一组,一共可以分成多少个小组?2、三年级的同学们做了 78 件玩具,分给二年级 18 件,剩下的平均分给一年级的两个班,一年级每班分得多少件玩具?3、三(1)班同学春游,要到小河的对岸去,现在岸边只有一条小船,。

【数学培优】相关DOC文档
中考数学培优(含解析)之统计知识初步
中考数学培优(含解析)之全等三角形
中考数学培优(含解析)之实数
中考数学培优(含解析)之特殊三角形
中考数学培优(含解析)之四边形
中考数学培优(含解析)之位置与坐标
中考数学培优(含解析)之一元二次方程
中考数学培优(含解析)之三角形
中考数学培优(含解析)之图形的轴对称
中考数学培优(含解析)之解直角三角形
中考数学培优(含解析)之一次方程
中考数学培优(含解析)之平面几何基础
标签 > 数学培优[编号:75976]