2019年安徽省淮南市潘集区中考数学四模试卷(含答案解析)

上传人:可** 文档编号:60527 上传时间:2019-05-03 格式:DOC 页数:26 大小:523KB
下载 相关 举报
2019年安徽省淮南市潘集区中考数学四模试卷(含答案解析)_第1页
第1页 / 共26页
2019年安徽省淮南市潘集区中考数学四模试卷(含答案解析)_第2页
第2页 / 共26页
2019年安徽省淮南市潘集区中考数学四模试卷(含答案解析)_第3页
第3页 / 共26页
2019年安徽省淮南市潘集区中考数学四模试卷(含答案解析)_第4页
第4页 / 共26页
2019年安徽省淮南市潘集区中考数学四模试卷(含答案解析)_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、2019 年安徽省淮南市潘集区中考数学四模试卷一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)1(4 分)21 的结果是( )A1 B3 C1 D32(4 分)下列运算正确的是( )Aa 2+a3a 5 Ba 2a4a 8C(a 2b) 3a 6b3 Da 2a a23(4 分)2018 年,淮南市经济运行总体保持平稳增长,全年 GDP 约为 1130 亿元,GDP 在全省排名第十三将 1130 亿用科学记数法表示为( )A11.310 10 B1.1310 10 C1.1310 11 D1.1310 124(4 分)下图是五个相同的小正方体搭成的几何体,其左视图是( )A

2、B C D5(4 分)如图,RtABC 中,AB9,BC 6,B90,将ABC 折叠,使 A 点与BC 的中点 D 重合,折痕为 MN,则线段 BN 的长为( )A B C4 D56(4 分)如图,ABC 中,AD 是中线,BC6,BDAC,则线段 AC 的长为( )A4 B C D7(4 分)一种药品原价每盒 25 元,经过两次降价后每盒 16 元设两次降价的百分率都为 x,则 x 满足( )A16(1+2x)25 B25(12x)16C16(1+x) 225 D25(1 x) 2168(4 分)在质地和颜色都相同的三张卡片的正面分别写有2,1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记

3、为 x,然后从余下的两张中再抽出一张,记为 y,则点(x ,y )在直线 yx 1 上的概率为( )A B C D19(4 分)如图,在矩形 ABCD 中,AB12,BC16,点 E 是 BC 中点,点 F 是边 CD上的任意一点,当AEF 的周长最小时,则 DF 的长为( )A10 B9 C8 D610(4 分)如图,一次函数 y1x 与二次函数 y2ax 2+bx+c 图象相交于 P、Q 两点,则函数 yax 2+(b1)x+c 的图象可能是( )A BC D二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11(5 分)在菱形 ABCD 中,对角线 AC,BD 的长分别是

4、6 和 8,则菱形的周长是 12(5 分)已知在 RtABC 中,C90,sin A ,则 tanB 的值为 13(5 分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为 cm 214(5 分)已知ABC 中,AB10,AC 2 ,B30,则ABC 的面积等于 三、(本大题共 2 小题,每小题 8 分,满分 16 分)15(8 分)计算:2sin30 ( ) 0+| 1|16(8 分)如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是 A(1,1),B(4, 1),C(3,3)(1)将ABC 向下平移 5 个单位后得到A 1B1C1,请画出A 1

5、B1C1;(2)将ABC 绕原点 O 逆时针旋转 90后得到A 2B2C2,请画出A 2B2C2;(3)判断以 O,A 1,B 为顶点的三角形的形状(无须说明理由)四、(本大题共 2 小题,每小题 8 分,满分 16 分)17(8 分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔 BD 的高度,他们先在 A 处测得古塔顶端点 D 的仰角为 45,再沿着 BA 的方向后退 20m 至 C 处,测得古塔顶端点 D 的仰角为 30求该古塔 BD 的高度(结果保留根号)18(8 分)观察下列关于自然数的等式:20+11 2,42+13 2,86+17 2,1614+115 2,根据上述规律解

6、决下列问题:(1)完成第五个等式:32 +1 ;(2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性五、(本大题共 2 小题,每小题 10 分,满分 20 分)19(10 分)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整)请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有 2000 名学生,请估计该校喜爱电视剧节目的人数20(10 分)矩

7、形 AOBC 中,OB4,OA 3,分别以 OB,OA 所在直线为 x 轴,y 轴,建立如图所示的平面直角坐标系,F 是 BC 边上一个动点(不与 B,C 重合),过点 F的反比例函数 y (k 0)的图象与边 AC 交于点 E(1)当点 F 为边 BC 的中点时,求点 E 的坐标;(2)连接 EF,求EFC 的正切值六、(本题满分 12 分).21(12 分)如图,AB 是 O 的直径,点 C 是 O 上一点, BAC 的平分线 AD 交O于点 D,过点 D 垂直于 AC 的直线交 AC 的延长线于点 E(1)求证:DE 是O 的切线;(2)如图 AD5,AE 4,求O 的直径七、(本题满分

8、 12 分)22(12 分)小明大学毕业回家乡创业,第一期培植盆景与花卉各 40 盆售后统计,盆景的平均每盆利润是 160 元,花卉的平均每盆利润是 19 元,调研发现:盆景每增加 1 盆,盆景的平均每盆利润减少 2 元;每减少 1 盆,盆景的平均每盆利润增加 2 元;花卉的平均每盆利润始终不变小明计划第二期培植盆景与花卉共 80 盆,设培植的盆景比第一期增加 x 盆,第二期盆景与花卉售完后的利润分别为 W1,W 2(单位:元)(1)用含 x 的代数式分别表示 W1,W 2;(2)当 x 取何值时,第二期培植的盆景与花卉售完后获得的总利润 W 最大,最大总利润是多少?八、(本题满分 14 分)

9、23(14 分)如图 1,在锐角ABC 中,D、E 分别是 AB、BC 的中点,点 F 在 AC 上,且满足AFE A,DMEF 交 AC 于点 M(1)证明:DMDA ;(2)如图 2,点 G 在 BE 上,且 BDG C ,求证: DEGECF ;(3)在图 2 中,取 CE 上一点 H,使得CFHB,若 BG3,求 EH 的长2019 年安徽省淮南市潘集区中考数学四模试卷参考答案与试题解析一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)1(4 分)21 的结果是( )A1 B3 C1 D3【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据

10、有理数的加法法则计算即可【解答】解:212+(1)3,故选:B【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键2(4 分)下列运算正确的是( )Aa 2+a3a 5 Ba 2a4a 8C(a 2b) 3a 6b3 Da 2a a2【分析】利用合并同类项法则判断 A;利用同底数幂的乘法法则判断 B;利用积的乘方法则判断 C;利用同底数幂的除法法则判断 D【解答】解:A、a 2 与 a3 不是同类项,不能合并,故本选项错误;B、a 2a4a 6,故本选项错误;C、(a 2b) 3a 6b3,故本选项正确;D、a 2aa,故本选项错误;故选:C【点评】本

11、题考查了合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键3(4 分)2018 年,淮南市经济运行总体保持平稳增长,全年 GDP 约为 1130 亿元,GDP 在全省排名第十三将 1130 亿用科学记数法表示为( )A11.310 10 B1.1310 10 C1.1310 11 D1.1310 12【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a| 10,n 为整数确定 n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:将 11

12、30 亿用科学记数法表示为 1.131011故选:C【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a| 10 ,n 为整数,表示时关键要正确确定 a 的值以及 n 的值4(4 分)下图是五个相同的小正方体搭成的几何体,其左视图是( )A B C D【分析】找到从左边向右边看所得到的图形即可,注意所有的看到的棱都应表现在视图中【解答】解:从左边看易得第一层有 2 个正方形,第二层有 1 个正方形故选:A【点评】本题考查了三视图的知识,左视图是从物体的左边向右看得到的视图5(4 分)如图,RtABC 中,AB9,BC 6,B90,将ABC 折叠,使 A 点

13、与BC 的中点 D 重合,折痕为 MN,则线段 BN 的长为( )A B C4 D5【分析】设 BNx ,则由折叠的性质可得 DNAN 9 x,根据中点的定义可得BD3,在 RtBDN 中,根据勾股定理可得关于 x 的方程,解方程即可求解【解答】解:设 BNx ,由折叠的性质可得 DNAN 9 x,D 是 BC 的中点,BD3,在 Rt BDN 中, x2+32(9 x ) 2,解得 x4故线段 BN 的长为 4故选:C【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大6(4 分)如图,ABC 中,AD 是中线,BC6,BDAC,则线

14、段 AC 的长为( )A4 B C D【分析】根据题意可证明CDACAB,即可得 CA2CD CB,利用已知数据即可求出 AC 的长【解答】解:BDAC,CC ,CDACAB即:CA 2CDCB而 BC6,AD 是中线CD3CA 2CDCB3618而 AC0,AC3 故选:D【点评】本题考查的是相似三角形的判定与性质,利用对应边成比例得出线段间的关系并进一步求解未知线段是常用方法7(4 分)一种药品原价每盒 25 元,经过两次降价后每盒 16 元设两次降价的百分率都为 x,则 x 满足( )A16(1+2x)25 B25(12x)16C16(1+x) 225 D25(1 x) 216【分析】等

15、量关系为:原价(1降价的百分率) 2现价,把相关数值代入即可【解答】解:第一次降价后的价格为:25(1x);第二次降价后的价格为:25(1x) 2;两次降价后的价格为 16 元,25(1x) 216故选:D【点评】本题考查求平均变化率的方法若设变化前的量为 a,变化后的量为 b,平均变化率为 x,则经过两次变化后的数量关系为 a(1x) 2b8(4 分)在质地和颜色都相同的三张卡片的正面分别写有2,1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为 x,然后从余下的两张中再抽出一张,记为 y,则点(x ,y )在直线 yx 1 上的概率为( )A B C D1【分析】首先根据题意画出树状图,

16、然后由树状图求得所有等可能的结果与点(x,y)在直线 yx1 上方的情况,再利用概率公式即可求得答案【解答】解:根据题意画树状图得:共有 6 种等可能的结果,点(x,y)在直线 yx1 上方的有:(2,1),(1,2),点(x,y)在直线 yx1 上方的概率为: ;故选:B【点评】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比9(4 分)如图,在矩形 ABCD 中,AB12,BC16,点 E 是 BC 中点,点 F 是边 CD上的任意一点,当AEF 的周长最小时,则 DF 的长为( )A10 B9 C8 D6【分析】作点 E 关于直线 CD 的对称点 E,连接 A

17、E交 CD 于点 F,再根据CEFBEA 即可求出 CF 的长,进而得出 DF 的长【解答】解:作点 E 关于直线 CD 的对称点 E,连接 AE交 CD 于点 F,在矩形 ABCD 中,AB 12,BC16,点 E 是 BC 中点,BECECE8,ABBC,CDBC, ,即 ,解得 CF4,DFCDCF1248故选:C【点评】本题考查的是轴对称最短路线问题及相似三角形的判定与性质,根据题意作出 E 点关于直线 CD 的对称点,再根据轴对称的性质求出 CE的长,利用相似三角形的对应边成比例即可得出结论10(4 分)如图,一次函数 y1x 与二次函数 y2ax 2+bx+c 图象相交于 P、Q

18、两点,则函数 yax 2+(b1)x+c 的图象可能是( )A BC D【分析】由一次函数 y1x 与二次函数 y2ax 2+bx+c 图象相交于 P、Q 两点,得出方程ax2+(b1)x +c0 有两个不相等的根,进而得出函数 yax 2+(b1)x+c 与 x 轴有两个交点,根据方程根与系数的关系得出函数 yax 2+(b1)x+c 的对称轴x 0,即可进行判断【解答】解:点 P 在抛物线上,设点 P(x,ax 2+bx+c),又因点 P 在直线 yx 上,xax 2+bx+c,ax 2+(b1)x +c0;由图象可知一次函数 yx 与二次函数 yax 2+bx+c 交于第一象限的 P、Q

19、 两点,方程 ax2+(b1)x +c0 有两个正实数根函数 yax 2+(b1)x +c 与 x 轴有两个交点,又 0,a0 + 0函数 yax 2+(b1)x +c 的对称轴 x 0,A 符合条件,故选:A【点评】本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11(5 分)在菱形 ABCD 中,对角线 AC,BD 的长分别是 6 和 8,则菱形的周长是 20 【分析】AC 与 BD 相交于点 O,如图,根据菱形的性质得ACBD,ODOB BD4,

20、OAOC AC3,ABBCCDAD,则可在 RtAOD 中,根据勾股定理计算出 AD5,于是可得菱形 ABCD 的周长为 20【解答】解:AC 与 BD 相交于点 O,如图,四边形 ABCD 为菱形,ACBD,ODOB BD4,OAOC AC3,ABBCCDAD,在 Rt AOD 中,OA3, OB4,AD 5,菱形 ABCD 的周长4520故答案为 20【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有 2 条对称轴,分别是两条对角线所在直线12(5 分)已知在 RtABC 中,C90

21、,sin A ,则 tanB 的值为 【分析】根据所给的角的正弦值可得两条边的比,进而可得第三边长,tanB 的值B的对边与邻边之比【解答】解:在 RtABC 中,C90,sin A ,sinA ,设 a 为 3k,则 c 为 5k,根据勾股定理可得:b4k,tanB ,故答案为: 【点评】考查求锐角的三角函数值的方法通常为:利用锐角三角函数的定义,通过设参数的方法求三角函数值13(5 分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为 16 cm 2【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从

22、而确定其表面积【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为 6cm,底面半径为 2cm,故表面积rl+ r22 6+2216(cm 2)故答案为:16【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查14(5 分)已知ABC 中,AB10,AC 2 ,B30,则ABC 的面积等于 15或 10 【分析】作 ADBC 交 BC(或 BC 延长线)于点 D,分 AB、AC 位于 AD 异侧和同侧两种情况,先在 RtABD 中求得 AD、BD 的值,再在 RtACD 中利用勾股定理求得

23、CD的长,继而就两种情况分别求出 BC 的长,根据三角形的面积公式求解可得【解答】解:作 ADBC 交 BC(或 BC 延长线)于点 D,如图 1,当 AB、AC 位于 AD 异侧时,在 Rt ABD 中,B30,AB10,ADABsin B5,BDABcosB5 ,在 Rt ACD 中, AC2 ,CD ,则 BCBD+ CD6 ,S ABC BCAD 6 515 ;如图 2,当 AB、AC 在 AD 的同侧时,由知, BD 5 ,CD ,则 BCBDCD4 ,S ABC BCAD 4 510 综上,ABC 的面积是 15 或 10 ,故答案为 15 或 10 【点评】本题主要考查解直角三角

24、形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理三、(本大题共 2 小题,每小题 8 分,满分 16 分)15(8 分)计算:2sin30 ( ) 0+| 1|【分析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案【解答】解:原式2 1+ 1 1【点评】此题主要考查了实数运算,正确化简各数是解题关键16(8 分)如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是 A(1,1),B(4, 1),C(3,3)(1)将ABC 向下平移 5 个单位后得到A 1B1C1,请画出A 1B1C1;(2)将ABC 绕原点 O 逆时针旋转 90后得到A 2B2C2,请画出A

25、2B2C2;(3)判断以 O,A 1,B 为顶点的三角形的形状(无须说明理由)【分析】(1)利用点平移的坐标特征写出 A1、B 1、C 1 的坐标,然后描点即可得到A1B1C1 为所作;(2)利用网格特定和旋转的性质画出 A、B、C 的对应点 A2、B 2、C 2,从而得到A2B2C2,(3)根据勾股定理逆定理解答即可【解答】解:(1)如图所示,A 1B1C1 即为所求:(2)如图所示,A 2B2C2 即为所求:(3)三角形的形状为等腰直角三角形,OBOA 1 ,A 1B ,即 ,所以三角形的形状为等腰直角三角形【点评】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应

26、线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形四、(本大题共 2 小题,每小题 8 分,满分 16 分)17(8 分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔 BD 的高度,他们先在 A 处测得古塔顶端点 D 的仰角为 45,再沿着 BA 的方向后退 20m 至 C 处,测得古塔顶端点 D 的仰角为 30求该古塔 BD 的高度(结果保留根号)【分析】在 RtABD 和 RtBCD 中,分别解直角三角形,用 BD 表示 AB 和 BC,然后根据 BCAB 20m,可求得塔 BD 的高度【解答】解:根据题意可知:BAD45,B

27、CD30,AC20m在 Rt ABD 中,BADBDA45,ABBD 在 Rt BDC 中,tanBCD , ,则 BC BD,又BCAB AC, BDBD20,解得:BD 10 +10(m )答:古塔 BD 的高度为( )m【点评】本题考查了解直角三角形的应用,解答本题的关键是利用仰角建立直角三角形,利用解直角三角形的知识分别用 BD 表示出 AB、BC 的长度18(8 分)观察下列关于自然数的等式:20+11 2,42+13 2,86+17 2,1614+115 2,根据上述规律解决下列问题:(1)完成第五个等式:32 30 +1 31 2 ;(2)写出你猜想的第 n 个等式(用含 n 的

28、式子表示),并验证其正确性【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可【解答】解:(1)根据题意得:3230+131 2;故答案为:30;31 2;(2)根据题意得:2 n(2 n2)+1(2 n1) 2,左边2 2n2 n+1+1,右边 22n2 n+1+1,左边右边【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键五、(本大题共 2 小题,每小题 10 分,满分 20 分)19(10 分)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成

29、了如下的两个统计图(不完整)请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有 2000 名学生,请估计该校喜爱电视剧节目的人数【分析】(1)根据喜爱电视剧的人数是 69 人,占总人数的 23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用 360乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解【解答】解:(1)6923%300(人)本次共调查 300 人;(2)喜欢娱乐节目的人数占总人数的 20%,20%30060(

30、人),补全如图;36012%43.2,新闻节目在扇形统计图中所占圆心角的度数为 43.2;(3)200023%460(人),估计该校有 460 人喜爱电视剧节目【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20(10 分)矩形 AOBC 中,OB4,OA 3,分别以 OB,OA 所在直线为 x 轴,y 轴,建立如图所示的平面直角坐标系,F 是 BC 边上一个动点(不与 B,C 重合),过点 F的反比例函数 y (k0)的图象与边 AC 交于点 E(1

31、)当点 F 为边 BC 的中点时,求点 E 的坐标;(2)连接 EF,求EFC 的正切值【分析】(1)先确定出点 A,B 坐标,进而求出点 C 坐标,再用点 F 是 BC 中点,求出点 F 坐标,利用待定系数法求出 k,最后将点 E 的纵坐标为 3 代入反比例函数解析式中即可求出点 E 坐标;(2)设出点 E(m,3),F(4,n),代入反比例函数 y 中得出 n m,进而用m 表示出 CE,CF 即可得出结论【解答】解:(1)OB4 ,OC3,A(0,3),B(4,0),四边形 AOBC 是矩形,OACOBC90,AC OB4,BCOA 3,C(4,3),点 F 是 BC 的中点,F(4,

32、),点 F 在反比例函数 y 的图象上,k4 6,反比例函数的解析式为 y ,点 E 在反比例函数 y 的图象上,且纵坐标为 3,点 E 的横坐标为 2,E(2,3);(2)如图,设点 E(m,3), F(4,n),AEm ,BF n,点 E,F 在反比例函数 y 的图象上,k3m4n,n m,CEACAE4AE 4 m,CF BC BF3BF3 m,在 Rt ECF 中,tanEFC 【点评】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,锐角三角函数,掌握反比例函数的性质是解本题的关键六、(本题满分 12 分).21(12 分)如图,AB 是 O 的直径,点 C 是 O 上一点,

33、 BAC 的平分线 AD 交O于点 D,过点 D 垂直于 AC 的直线交 AC 的延长线于点 E(1)求证:DE 是O 的切线;(2)如图 AD5,AE 4,求O 的直径【分析】(1)连接 OD,由 AD 为角平分线,得到一对角相等,再由 OAOD,得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行可得 AE 与 OD平行,由两直线平行同旁内角互补,得到E 与EDO 互补,再由 E 为直角,可得EDO 为直角,即 DE 为圆 O 的切线,得证;(2)连接 BD,由 AB 为圆 O 的直径,根据直径所对的圆周角为直角,得到 ADB 为直角,在直角三角形 ABD 中,利用锐角三角

34、函数定义得到 cosDAB ,又在直角三角形 AED 中,由 AE 及 AD 的长,利用锐角三角函数定义求出 cosEAD 的值,由EADDAB,得到 cosEADcosDAB,得出 cos DAB 的值,即可求出直径 AB的长【解答】(1)证明:连接 OD,如图所示:AD 为CAB 的平分线,CADBAD,又OAOD ,BADODA,CADODA,ACOD,E+EDO180,又 AEED ,即E90,EDO 90 ,则 ED 为圆 O 的切线;(2)解:连接 BD,如图所示,AB 为圆 O 的直径,ADB90,在 Rt ABD 中,cosDAB ,在 Rt AED 中,AE 4,AD 5,c

35、osEAD ,又EAD DAB,cosDABcosEAD ,则 AB AD ,即圆的直径为 【点评】此题考查了切线的判定,圆周角定理,勾股定理,平行线的判定与性质,以及锐角三角函数定义,切线的证明方法有两种:有点连接证垂直;无点作垂线证明垂线段等于圆的半径七、(本题满分 12 分)22(12 分)小明大学毕业回家乡创业,第一期培植盆景与花卉各 40 盆售后统计,盆景的平均每盆利润是 160 元,花卉的平均每盆利润是 19 元,调研发现:盆景每增加 1 盆,盆景的平均每盆利润减少 2 元;每减少 1 盆,盆景的平均每盆利润增加 2 元;花卉的平均每盆利润始终不变小明计划第二期培植盆景与花卉共 8

36、0 盆,设培植的盆景比第一期增加 x 盆,第二期盆景与花卉售完后的利润分别为 W1,W 2(单位:元)(1)用含 x 的代数式分别表示 W1,W 2;(2)当 x 取何值时,第二期培植的盆景与花卉售完后获得的总利润 W 最大,最大总利润是多少?【分析】(1)根据“盆景的总利润盆景的数量每盆盆景的利润及花卉的总利润花卉的数量每盆花卉的利润”可得函数解析式;(2)根据总利润盆景的总利润+花卉的总利润列出函数关系式,再利用二次函数的性质求解可得【解答】解:(1)W 1(40+x )(1602x)2x 2+80x+6400,即W12x 2+80x+6400,W21980(40+x )19x+760;(

37、2)W 总 W 1+W2(2x 2+80x+6400)+(19x+760)2x 2+61x+7160a20,x 15.25,且 x 是整数,当 x15 或 16 时,W 总最大 ,当 x15 时,W 总 215 2+6115+71607625(元),当 x16 时,W 总 216 2+6116+71607624(元),76257624当 x15 时,W 总最大 7625(元)答:当 x15 时,第二期培植的盆景与花卉售完后获得的总利润 W 最大,最大总利润是 7625 元【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并据此列出函数解析式及二次函数的性质八、

38、(本题满分 14 分)23(14 分)如图 1,在锐角ABC 中,D、E 分别是 AB、BC 的中点,点 F 在 AC 上,且满足AFE A,DMEF 交 AC 于点 M(1)证明:DMDA ;(2)如图 2,点 G 在 BE 上,且 BDG C ,求证: DEGECF ;(3)在图 2 中,取 CE 上一点 H,使得CFHB,若 BG3,求 EH 的长【分析】(1)想办法证明AMDA 即可(2)根据两角相等的两个三角形相似即可证明(3)理由相似三角形以及平行四边形的性质证明 BGEH 即可解决问题【解答】(1)证明:如图 1 所示,DM EF,AMDAFE ,AFE A,AMDA,DM DA

39、(其他解法酌情给分)(2)证明:如图 2 所示,D、E 分别是 AB、BC 的中点,DEAC,BDEA,DEGC,AFE A,BDEAFE,BDG +GDEC+FEC,BDG C,GDE FEC ,DEG ECF (3)如图 3 所示,BDG CDEB ,BB,BDG BED, ,BD 2BG BE,AFE A,CFHB,C180AB180AFE CFH EFH,又FEHCEF ,EFHECF, ,EF 2EH EC,DEAC,DM EF,四边形 DEFM 是平行四边形,EFDM DABD,BGBEEHEC,BEEC,EHBG 3【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,平行四边形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用相似三角形的性质证明线段线段,属于中考压轴题

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 第三次模拟