人教A版高中数学选修1-2《2.2.2反证法》课件

上传人:可** 文档编号:55492 上传时间:2019-04-06 格式:PPTX 页数:32 大小:1.33MB
下载 相关 举报
人教A版高中数学选修1-2《2.2.2反证法》课件_第1页
第1页 / 共32页
人教A版高中数学选修1-2《2.2.2反证法》课件_第2页
第2页 / 共32页
人教A版高中数学选修1-2《2.2.2反证法》课件_第3页
第3页 / 共32页
人教A版高中数学选修1-2《2.2.2反证法》课件_第4页
第4页 / 共32页
人教A版高中数学选修1-2《2.2.2反证法》课件_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、2.2.2 反证法,第二章 2.2 直接证明与间接证明,学习目标 1.了解反证法是间接证明的一种基本方法. 2.理解反证法的思考过程,会用反证法证明数学问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 反证法,思考1,王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”,答案,答案 运用了反证法思想.,本故事中王戎运用了什么论证思想?,思考2,反证法解

2、题的实质是什么?,答案,答案 否定结论,导出矛盾,从而证明原结论正确.,(1)定义:假设原命题 ,经过正确的推理,最后得出矛盾,因此说明 ,从而证明了 ,这样的证明方法叫做反证法. (2)反证法常见的矛盾类型 反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与 矛盾,或与 矛盾,或与 矛盾等.,梳理,不成立,假设错误,原命题成立,已知条件,假设,定义、公理、定理、事实,题型探究,例1 设an是公比为q的等比数列.设q1,证明:数列an1不是等比数列.,类型一 用反证法证明否定性命题,证明,证明 假设an1是等比数列,则对任意的kN*, (ak11)2(ak1)(ak21),,a10,2qk

3、qk1qk1. q0,q22q10, q1,这与已知矛盾. 假设不成立,故an1不是等比数列.,(1)用反证法证明否定性命题的适用类型: 结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法. (2)用反证法证明数学命题的步骤,反思与感悟,证明,a,b,c成等比数列, b2ac, ,ac,从而abc. 这与已知a,b,c不成等差数列相矛盾,假设不成立.,类型二 用反证法证明“至多、至少”类问题,例2 a,b,c(0,2),求证:(2a)b,(2b)c,(2c)a不能都大于1.,证明,证明 假设(2a)b,(2b)c,(2

4、c)a都大于1. 因为a,b,c(0,2), 所以2a0,2b0,2c0.,即33,矛盾. 所以(2a)b,(2b)c,(2c)a不能都大于1.,引申探究 已知a,b,c(0,1),求证:(1a)b,(1b)c,(1c)a不能都大于 1 4 .,证明,证明 假设(1a)b,(1b)c,(1c)a都大于 1 4 . a,b,c都是小于1的正数, 1a,1b,1c都是正数.,应用反证法常见的“结论词”与“反设词” 当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,可用反证法证明,证明时常见的“结论词”与“反设词”如下:,反思与感悟,跟踪训练2 已知a,b,c是互不相等的实数

5、,求证:由y1ax22bxc,y2bx22cxa和y3cx22axb确定的三条抛物线至少有一条与x轴有两个不同的交点.,证明,证明 假设题设中的函数确定的三条抛物线都不与x轴有两个不同的交点, 由y1ax22bxc,y2bx22cxa,y3cx22axb, 得1(2b)24ac0,2(2c)24ab0, 且3(2a)24bc0. 同向不等式求和,得 4b24c24a24ac4ab4bc0, 所以2a22b22c22ab2bc2ac0, 所以(ab)2(bc)2(ac)20,所以abc. 这与题设a,b,c互不相等矛盾, 因此假设不成立,从而命题得证.,类型三 用反证法证明唯一性命题,例3 求证

6、:方程2x3有且只有一个根.,证明 2x3,xlog23. 这说明方程2x3有根. 下面用反证法证明方程2x3的根是唯一的. 假设方程2x3至少有两个根b1,b2(b1b2), 则2 3,2 3,两式相除得2 1, b1b20,则b1b2,这与b1b2矛盾. 假设不成立,从而原命题得证.,证明,用反证法证明唯一性命题的一般思路:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,可先证“存在性”,由于假设“唯一性”结论不成立易导出矛盾,因此可用反证法证其唯一性.,反思与感悟,跟踪训练3 若函数f(x)在区间a,b上

7、是增函数,求证:方程f(x)0在区间a,b上至多有一个实根.,证明 假设方程f(x)0在区间a,b上至少有两个实根,设、为其中的两个实根.因为 ,不妨设,又因为函数f(x)在a,b上是增函数,所以f()b,2,3,4,5,1,答案,4.用反证法证明“在同一平面内,若ac,bc,则ab”时,应假设 A.a不垂直于c B.a,b都不垂直于c C.ab D.a与b相交,2,3,4,5,1,证明,5.用反证法证明:关于x的方程x24ax4a30,x2(a1)xa20,x22ax2a0,当a 3 2 或a1时,至少有一个方程有实数根.,证明 假设三个方程都没有实数根,则由判别式都小于零,,2,3,4,5,1,规律与方法,用反证法证题要把握三点: (1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的. (2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法. (3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.,本课结束,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 人教新课标A版 > 选修1-2