1、1.1实数及其运算一、选择题(本大题共10小题,每小题2分,共20分) 1的相反数是( )A3BCD【答案】A【分析】根据相反数的定义即可求解【详解】解:的相反数是3,故轩A【点睛】本题主要考查相反数的定义,掌握“只有符号不同的两个数叫做互为相反数”,是关键2(2022山东济南模拟预测)等于( )ABC1D0【答案】B【分析】根据绝对值的意义即可求解正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数【详解】解:等于,故选:B【点睛】本题考查了求一个数的绝对值,掌握绝对值的意义是解题的关键3(2022广东江门市第二中学九年级阶段练习)下列各数3.141,0.1010010001中,无
2、理数有( )个A2B3C4D5【答案】B【分析】根据无理数的概念及算术平方根可进行求解【详解】解:,在各数3.141,0.1010010001中,无理数有,0.1010010001;共3个;故选B【点睛】本题主要考查无理数的概念及算术平方根,熟练掌握无理数的概念是解题的关键4(2022广东深圳市福景外国语学校九年级期中)下列说法中正确的是( )A9的平方根是3B 的算术平方根是2C 的算术平方根是4D 的平方根是2【答案】D【分析】根据算术平方根和平方根的定义对各选项分析判断即可【详解】解:A、9的平方根是3,故本选项错误;B、=4,的算术平方根是2,故本选项错误;C、 的算术平方根是2,故本
3、选项错误;D、=4,的平方根是2,故本选项正确故选:D【点睛】本题考查算术平方根和平方根,熟练掌握各自的定义是解题的关键5(2022湖南邵阳市第十六中学九年级期末)如图,OAOB,则数轴上点A所表示的数是( )A1.5BCD2【答案】C【分析】根据勾股定理可求出OB的长度,根据OAOB即可知道点A所表示的数的绝对值,根据点A在数轴上的位置即可解答【详解】由图可知,BC=1,OC=2根据勾股定理可得:OB=,OA=,点A表示的数为:,故选:C【点睛】本题主要考查了在数轴上表示无理数以及勾股定理,熟练掌握勾股定理的内容是解题的关键6(2022甘肃天水模拟预测)对于任意不相等的两个数a,b,定义一种
4、运算如下:,如,那么的值是( )A1BCD3【答案】A【分析】先根据题目中的运算方法列式,再根据算术平方根定义求解即可【详解】解:,故选:A【点睛】本题考查了算术平方根的定义,解题关键是理解题目中的运算方法7(2022广东东莞市光明中学一模)我们规定:一个整数能表示成是整数,且的形式,则称这个数为“完美数”,例如,是“完美数”,理由:因为,所以是“完美数”,下列各数中,“完美数”是( )ABCD【答案】C【分析】根据“完美数”的定义分别进行判断即可;【详解】解:,但是,而和不能表示成两个数的平方和,“完美数”只有故选:【点睛】本题主要考查了实数运算中的有理数的乘方,熟练掌握有理数的乘方的意义是
5、解题的关键8(2022重庆市第三十七中学校二模)运行程序如图所示,从“输入整数x”到“结果是否18”为一次程序操作,输入整数11,输出结果为27;若输入整数x后程序操作仅进行了两次就停止,则x的最大值是8;若操作停止时输出结果为21,则输入的整数x是9;输入整数x后,该操作永不停止,则,以上结论正确有( )ABCD【答案】D【分析】根据程序运行图,对选项逐个判断即可【详解】解:,停止运行,输出,正确;根据题意可得:,解得,x的最大值是8,正确;当输入为时,继续运行,则,此时输出结果也为21,但是输入的数不为,错误;由题意可得:当时,会不停止运行,解得,正确;正确的是故选:D【点睛】此题考查了程
6、序流程图,涉及了一元一次不等式(组),解题的关键是理解题意,读懂程序流程图,正确列出不等式9(2022重庆八中九年级阶段练习)任何一个正整数都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解称为正整数n的最佳分解,并定义一个新运算例如:,又因为,则那么以下结论中:;若是一个完全平方数,则;是一个完全立方数(即,是正整数),则;若,则正确的个数为( )A1个B2个C3个D4个【答案】C【分析】理解新运算的方法,再以法则计算各式,从而判断【详解】解:,则,正确;若是一个完全平方数,即,是正整数,则,正确;是一个完全立方数(即,是正整数),如,错误;若,则,故正确;综上,正确的
7、个数为3个故选:C【点睛】本题考查了因式分解的运算,此题的关键是读懂新运算,特别注意“把两个乘数的差的绝对值最小的一种分解”这句话10(2022重庆市万州国本中学校一模)我校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵种植在点(,)处,其中,当时,其中a表示非负实数a的整数部分,例如,并且,称第k棵树的位置为“第行第列”五个同学得出了下面一些结论:甲:时, 乙:时,;丙:第6棵树种植在点(6,2)处; 丁:每一行种植5棵树;戊:第2022棵树的位置为“第404行第2列”以上结论正确的个数是( )A2个B3个C4个D5个【答案】C【分析】根据题中的规律,仔细阅读,根据取整的定
8、义,求出P1,P2,然后对个选项进行一一计算即可【详解】解:当时,P1(1,1),当k=2时,x2-x1=1-5(-0)=1,x2=1+1=2,y2=y1+=1,P2(2,1),当k=3时,x3-x2=1-5=1,x3=1+2=3,y3=y2+=1,P3(3,1),当k=4时,x4-x3=1-5=1,x4=3+1=4y4=y3+-=1,P4(4,1),当k=5时,x5-x4=1-5=1,x5=4+1=5,y5=y4+-=1,P5(5,1),当k=6时,x6-x5=1-5=1,x6=5+1-5=1,y5=y4+-=1+1=2,P6(1,2)当7k10时, P7,P8,P9,P10的坐标分别为(2
9、,2),(3,2),(4,2),(5,3),当k=11时,x11-x10=1-5=1,x11=1,y11=3,P6(1,3)当12k15时, P12,P13,P14,P15的坐标分别为(2,3),(3,3),(4,3),(5,3),通过以上数据分析可以得出,当k=1+5m时,Pk的坐标为(1+m+1),而后面的四个点的纵坐标均为m+1,横坐标分别为2,3,4,5,k=5时, ,故甲正确;时,故乙正确;第6棵树种植在点P6(1,2)处,故丙不正确;1-5棵,纵坐标均为1,6-10棵纵坐标均为2,每行种植5棵树,故丁正确;2022=4045+2,第2022棵树的位置为“第404行第2列”故戊正确;
10、故正确的个数有4个故选择C【点睛】本题考查新定义,仔细阅读,掌握新定义的实质,理解符号a的意义是解题关键二、填空题(本大题共6小题,每小题3分,共18分)11(2022江苏常州市北郊初级中学二模)为做好新冠疫情常态化防控,更好保护人民群众身体健康,常州市开展新冠疫苗检测工作截至4月底,已累计新冠疫苗检测剂次,数据用科学记数法可表示_【答案】【分析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数依此可以进行求解【详解】解:故答案为:【点睛】本题考查科学记数法的
11、表示方法,科学记数法的表示形式为的形式,其中,n为整数,确定和 n的值是解题关键12(2022河南周口九年级阶段练习)比较大小:_(填“”“”或“”)【答案】【分析】先两个式子相减,再无理数比较大小,最后确定两个式子相减后是否大于0即可【详解】解:,故答案为:【点睛】本题考查了实数大小的比较,在有无理数时,先估算无理数的范围或直接看根式下的数值做比较,就能比较出大小13(2022广东深圳市光明区实验学校九年级期中)从1,0,中任取一个数,则取到的数是无理数的概率是_【答案】#0.4【分析】先找出无理数的个数,再根据概率公式即可得出答案【详解】解:在1,0,中,无理数有,共2个,取到的数是无理数
12、的概率是.故答案为:【点睛】本题主要考查了概率的计算,掌握无理数的定义是解题的关键14(2022黑龙江大庆市肇州县肇州中学九年级期中)点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_【答案】【分析】根据题意列出算式求解即可【详解】点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,点A表示的数是故答案为:【点睛】此题考查了数轴动点问题,数轴上表示有理数的方法,有理数的加减运算等知识,解题的关键是根据题意列出算式求解15(2022陕西西安九年级期中)实数满足,这四个数在数轴上对应的点分别为A,N,M,B(如图所示),若,当时,的长度为_
13、【答案】#【分析】根据数轴得出之间的关系,设未知数列方程求解【详解】解:由数轴得:,设,则,解得:,故答案为:【点睛】本题考查了实数和数轴,方程思想是解题的关键16(2022广东深圳市光明区实验学校九年级期中)对于实数p、q,我们用符号表示p,q两数中较大的数,如,若,则x_【答案】3或-2#-2或3【分析】首先理解题意,进而可得时分情况讨论,当时,时和时,进而可得答案【详解】解:时,时,得,得,时,得,得,时,;时,;时,;,当时,不可能得出最大值为9,当时,则,解得:或(不合题意,舍去),当时,;当时,则,或(不合题意,舍去),故当时,;则综上所述:x的值为3或故答案为:3或【点睛】此题考
14、查了新定义题,准确理解题意、熟练掌握乘法公式、一元一次不等式解法、一元二次方程的解法是解答此题的关键三、解答题(本大题共7小题,共62分解答时应写出文字说明、证明过程或演算步骤)17(2022江苏泰州七年级期中)请把下列各数填在相应的集合里:0,3.14,(每两个1之间依次增加一个0)(将序号写在横线上即可)负数集合: 分数集合: 有理数集合: 无理数集合: 【答案】;【分析】有理数和无理数称之为实数,无理数是无限不循环小数,有理数包括无限循环小数和有限小数,逐一判断即可【详解】解:,负数集合: 分数集合: 有理数集合: 无理数集合:【点睛】本题考查实数的分类,熟记实数的概念和分类是解题的关键
15、18(2022广东红岭中学九年级期中)计算:【答案】【分析】根据乘方、零指数幂、负整数指数幂、绝对值的性质计算,即可得到答案.【详解】解:【点睛】本题考查了乘方、零指数幂、负整数指数幂、绝对值的知识,解题的关键是熟练掌握乘方、零指数幂、负整数指数幂、绝对值的性质,从而完成求解.19(2022辽宁沈阳市实验学校九年级期中)计算;(1);(2)【答案】(1);(2)【分析】(1)根据有理数的加减法可以解答本题;(2)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算【详解】(1)解:;(2)解:【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级
16、运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算20(2022陕西渭南八年级期中)在一次活动课中,虹烨同学用一根绳子围成一个长宽之比为,面积为的长方形(1)求长方形的长和宽;(2)她用另一根绳子围成一个正方形,且正方形的面积等于原来围成的长方形面积,她说:“围成的正方形的边长比原来长方形的宽大”,请你判断她的说法是否正确,并说明理由【答案】(1)长方形的长为,宽为(2)她的说法正确,理由见解析【分析】(1)根据题意设长方形的长为,宽为,则,再利用平方根的含义解方程即可;(2)设正方形的边长为,根据题意可得,利用平方根的含义先解方程,再比较大小即可【详解】(1)解:设长方形的长为
17、,宽为,由题意得:,即,且,答:长方形的长为,宽为(2)设正方形的边长为,根据题意可得,且,原来长方形的宽为,所以她的说法正确【点睛】本题考查的是算术平方根的应用,利用平方根的含义解方程,以及无理数的估算,理解题意,准确地列出方程或代数式是解本题的关键21(2022湖南衡阳市第十五中学九年级阶段练习)已知x、y满足求(1)x、y的值(2)的平方根【答案】(1),(2)【分析】(1)根据二次根式有意义的条件求出的值,然后代入式子求出的值;(2)求出的值,从而得到平方根【详解】(1)解:,解得,故;(2),的平方根为【点睛】本题主要考查二次根式有意义的条件,解答本题的关键是求出和的值,本题难度一般
18、22(2022辽宁沈阳市实验学校九年级期中)全运会期间出租车司机小王在南北走向的一段公路上运营,如果向北记作“+”,向南记作“”,他这天的行车情况记录如下(单位:千米)2,+5,1,+10,3,2,5,+6请回答:(1)小王将最后一名乘客安全送到目的地时,在出发地的什么方向,距出发地多远?(2)这天出租车行程总共是多少千米?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收1.2元钱,小王决定将这个时段的全部营业额捐给特殊学校,那么小王这个运营时段可以捐多少钱?【答案】(1)小王将最后一名乘客安全送到目的地时,在出发地北
19、边,距出发地千米;(2)这天出租车行程总共是千米(3)小王这个运营时段可以捐元【分析】(1)根据正负数的意义,结合有理数加减法混合运算法则列式计算;(2)将所给数据的绝对值相加即可得出答案;(3)根据收费标准计算出营运收费,从而求解【详解】(1)解: (千米),答:小王将最后一名乘客安全送到目的地时,在出发地北边,距出发地千米;(2)(千米),答:这天出租车行程总共是千米;(3)在营运路程为2千米,5千米,1千米,10千米,3千米,2千米,5千米,6千米中,有4次营运路程在3千米以内,(元),有4次营运路程在3千米以上,分别为5千米,10千米,5千米,6千米,(元),(元),小王这个运营时段可
20、以捐元【点睛】本题考查有理数的混合运算,理解正负数的意义,掌握有理数加减混合运算的运算法则是解题关键23(2022全国八年级课时练习)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成四部分,点A,B,C对应的数分别是a,b,c,已知bc0(1)请直接写出原点在第几部分;(2)若AC5,BC3,b1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值【答案】(1)第部分(2)3(3)6或3或【分析】(1)因为bc0,所以b,c异号,所以原点在第部分;(2)求出AB的值,然后根据点A在点B左边2个单位求出a的值;(3)由于不知道点D的位置,所以分三种情况分别计算即可(1)解:bc0,b,c异号,原点在第部分;(2)AC5,BC3,ABACBC532,b1,a123;(3)当点C是OD的中点时,OD2OC236,此时d6;当O是CD的中点时,ODOC3,此时d3;当D是OC的中点时,ODOC3,此时dd6或3或【点睛】本题考查数轴上两点之间的距离问题,两点之间的距离为右边的点表示的数减去左边的点表示的数