2022年江苏省中考数学真题分类汇编6:函数解答题(含答案解析)

上传人:吹** 文档编号:217557 上传时间:2022-07-09 格式:DOCX 页数:32 大小:1.45MB
下载 相关 举报
2022年江苏省中考数学真题分类汇编6:函数解答题(含答案解析)_第1页
第1页 / 共32页
2022年江苏省中考数学真题分类汇编6:函数解答题(含答案解析)_第2页
第2页 / 共32页
2022年江苏省中考数学真题分类汇编6:函数解答题(含答案解析)_第3页
第3页 / 共32页
2022年江苏省中考数学真题分类汇编6:函数解答题(含答案解析)_第4页
第4页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2022年江苏省中考真题分类汇编6:函数一、解答题1(2022江苏常州)如图,在平面直角坐标系中,一次函数的图象分别与轴、轴交于点、,与反比例函数的图象交于点,连接已知点,的面积是2(1)求、的值;(2)求的面积2(2022江苏常州)已知二次函数的自变量的部分取值和对应函数值如下表:0123430(1)求二次函数的表达式;(2)将二次函数的图像向右平移个单位,得到二次函数的图像,使得当时,随增大而增大;当时,随增大而减小,请写出一个符合条件的二次函数的表达式_,实数的取值范围是_;(3)、是二次函数的图像上互不重合的三点已知点、的横坐标分别是、,点与点关于该函数图像的对称轴对称,求的度数3(2

2、022江苏常州)在5张相同的小纸条上,分别写有语句:函数表达式为;函数表达式为;函数的图像关于原点对称;函数的图像关于轴对称;函数值随自变量增大而增大将这5张小纸条做成5支签,、放在不透明的盒子中搅匀,、放在不透明的盒子中搅匀(1)从盒子中任意抽出1支签,抽到的概率是_;(2)先从盒子中任意抽出1支签,再从盒子中任意抽出1支签求抽到的2张小纸条上的语句对函数的描述相符合的概率4(2022江苏泰州)定义:对于一次函数 ,我们称函数为函数的“组合函数”.(1)若m=3,n=1,试判断函数是否为函数的“组合函数”,并说明理由;(2)设函数与的图像相交于点P.若,点P在函数的“组合函数”图像的上方,求

3、p的取值范围;若p1,函数的“组合函数”图像经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图像与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.5(2022江苏泰州)如图,二次函数的图像与轴相交于点,与反比例函数的图像相交于点B(3,1).(1)求这两个函数的表达式;(2)当随的增大而增大且时,直接写出的取值范围;(3)平行于轴的直线l与函数的图像相交于点C、D(点C在点D的左边),与函数的图像相交于点E.若ACE与BDE的面积相等,求点E的坐标.6(2022江苏无锡)已知二次函数图像的对称轴与x轴交于点A(1,0),图像与y轴交

4、于点B(0,3),C、D为该二次函数图像上的两个动点(点C在点D的左侧),且(1)求该二次函数的表达式;(2)若点C与点B重合,求tanCDA的值;(3)点C是否存在其他的位置,使得tanCDA的值与(2)中所求的值相等?若存在,请求出点C的坐标;若不存在,请说明理由7(2022江苏无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图)(1)若矩形养殖场的总面积为36,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为

5、多少?8(2022江苏苏州)如图,在二次函数(m是常数,且)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D其对称轴与线段BC交于点E,与x轴交于点F连接AC,BD(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求的度数;(2)若,求m的值;(3)若在第四象限内二次函数(m是常数,且)的图像上,始终存在一点P,使得,请结合函数的图像,直接写出m的取值范围9(2022江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按

6、标价的8折售卖(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?10(2022江苏扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘在轴上,且dm,外轮廓线是抛物线的一部分,对称轴为轴,高度dm现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为dm的圆,请说明理由11(2022江苏宿迁)如图,二次函数与轴交于 (0,0), (4

7、,0)两点,顶点为,连接、,若点是线段上一动点,连接,将沿折叠后,点落在点的位置,线段与轴交于点,且点与、点不重合(1)求二次函数的表达式;(2)求证:;求;(3)当时,求直线与二次函数的交点横坐标12(2022江苏苏州)如图,一次函数的图像与反比例函数的图像交于点,与y轴交于点B,与x轴交于点(1)求k与m的值;(2)为x轴上的一动点,当APB的面积为时,求a的值13(2022江苏苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价

8、;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值14(2022江苏连云港)如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于、两点点,点的纵坐标为2(1)求反比例函数与一次函数的表达式;(2)求的面积15(2022江苏连云港)已知二次函数,其中(1)当该函数的图像经过原点,求此时函数图像的顶点的坐标

9、;(2)求证:二次函数的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值参考答案1(1)4;6(2)6【解析】【分析】(1)由点B(0,4)在一次函数y=2x+b的图象上,代入求得b=4,由BOC的面积是2得出C的横坐标为1,代入直线关系式即可求出C的坐标,从而求出k的值;(2)根据一次函数的解析式求得A的坐标,然后根据三角形的面积公式代入计算即可(1)解:一次函数的图象轴交于点,OB=4,一次函数解析式为,设点C(m,n),的面积是2,解得:m=1,点C在一次函数图象上,点C(1,6),把点C

10、(1,6)代入得:k=6;(2)当y=0时,解得:x=-2,点A(-2,0),OA=2,【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求出C的坐标是解题的关键2(1)(2)(答案不唯一),(3)ACB=45或135【解析】【分析】(1)利用待定系数法求解即可;(2)先求出平移后的二次函数对称轴为直线,然后根据二次函数的增减性求出,即可得到答案;(3)先分别求出A、B、C三点的坐标,然后求出,然后分四种情况讨论求解即可得到答案(1)解:由题意得:,解得,二次函数解析式为;(2)解:原二次函数解析式为 由题意得平移后的二次函

11、数解析式为,平移后的二次函数对称轴为直线,二次函数的图像,使得当时,随增大而增大;当时,随增大而减小,且二次函数的开口向下,符合题意的二次函数解析式可以为;故答案为:(答案不唯一),;(3)解:二次函数解析式为,二次函数的对称轴为直线,A、C关于对称轴对称,点A的横坐标为m,C的横坐标为,点A的坐标为(m,),点C的坐标为(,),点B的横坐标为m+1,点B的坐标为(m+1,),如图1所示,当A、B同时在对称轴左侧时,过点B作BEx轴于E,交AC于D,连接BC,A、C关于对称轴对称,轴,BDC是等腰直角三角形,ACB=45,同理当AB同时在对称轴右侧时,也可求得ACB=45,如图2所示,当A在对

12、称轴左侧,B在对称轴右侧时,过点B作直线BD垂直于直线AC交直线AC于D,同理可证BDC为等腰直角三角形,BCD=45,ACB=135,同理当A在对称轴右侧,B在对称轴左侧也可求得ACB=135,综上所述,ACB=45或135【点睛】本题主要考查了二次函数综合,二次函数的平移,二次函数的增减性,待定系数法求函数解析式等等,熟知二次函数的相关知识是解题的关键3(1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画出树状图,再由概率计算公式求解即可(1)解:从盒子中任意抽出1支签,抽到的概率是;故答案为:;(2)解:画出树状图:共有6种结果,抽到的2张小纸条上的语句对函数的描述相符合的

13、有、和、和、共3种,抽到的2张小纸条上的语句对函数的描述相符合的概率为【点睛】本题主要考查了列表法或树状图求概率,一次函数与二次函数的性质,解题的关键是会列出表或树状图以及一次函数与二次函数的性质4(1)是函数的“组合函数”(2);存在,见详解【解析】【分析】(1)把m=3,n=1代入组合函数中,化简后进行判断即可;(2)先求出点P的坐标和“组合函数”,把代入“组合函数”,再根据题意,列不等式求解即可;将点P代入“组合函数”,整理得m+n=1,把n=1-m代入“组合函数”,消去n,把y=0代入解一元一次方程即可求解(1)解:是函数的“组合函数”,理由:由函数的“组合函数”为:,把m=3,n=1

14、代入上式,得,函数是函数的“组合函数”;(2)解:解方程组得, 函数与的图像相交于点P,点P的坐标为,的“组合函数”为, , ,点P在函数的“组合函数”图像的上方,整理,得, p的取值范围为;存在,理由如下:函数的“组合函数”图像经过点P将点P的坐标代入“组合函数”,得, ,将代入=,把y=0代入,得解得:,设,则, ,对于不等于1的任意实数p,存在“组合函数”图像与x轴交点Q的位置不变【点睛】本题考查了一次函数的图像和性质,一次函数与不等式的关系,一次函数与一元一次方程,正确理解“组合函数”的定义是解本题的关键5(1);(2)(3)【解析】【分析】(1)用待定系数法求出解析式即可;(2)由图

15、像直接得出结论即可;(3)根据点和点的坐标得出两三角形等高,再根据面积相等得出,进而确定点是抛物线对称轴和反比例函数的交点,求出点的坐标即可(1)解:二次函数的图像与轴相交于点,与反比例函数的图像相交于点,解得,二次函数的解析式为,反比例函数的解析式为;(2)解:二次函数的解析式为,对称轴为直线,由图像知,当随的增大而增大且时,;(3)解:由题意作图如下:当时,的边上的高与的边上的高相等,与的面积相等,即点是二次函数的对称轴与反比例函数的交点,当时,【点睛】本题主要考查二次函数和反比例函数的综合题,熟练掌握二次函数和反比例函数的图像及性质,三角形的面积,待定系数法求解析式等知识是解题的关键6(

16、1)(2)1(3),【解析】【分析】(1)二次函数与y轴交于点,判断,根据,即二次函数对称轴为,求出b的值,即可得到二次函数的表达式;(2)证明,得到,即,设,点D在第一象限,根据点的坐标写出长度,利用求出t的值,即可,的值,进一步得出tanCDA的值;(3)根据题目要求,找出符合条件的点C的位置,在利用集合图形的性质,求出对应点C的坐标即可。(1)解:二次函数与y轴交于点,即,即二次函数对称轴为,二次函数的表达式为(2)解:如图,过点D作x轴的垂线,垂足为E,连接BD,即,设:,点D在第一象限,解得:(舍),(舍),当时,在中,(3)解:存在,如图,(2)图中关于对称轴对称时,点D的坐标为,

17、此时,点C的坐标为,如图,当点C、D关于对称轴对称时,此时AC与AD长度相等,即,当点C在x轴上方时,过点C作CE垂直于x轴,垂足为E,点C、D关于对称轴对称,为等腰直角三角形,设点C的坐标为,解得:,(舍),此时,点C的坐标为,当点C在x轴下方时,过点C作CF垂直于x轴,垂足为F,点C、D关于对称轴对称,为等腰直角三角形,设点C的坐标为,解得:(舍),此时,点C的坐标为,综上:点C的坐标为,【点睛】本题考查二次函数的综合问题,运用数形结合、分类讨论及方程思想是解题的关键7(1)x的值为2m;(2)当x=4时,S有最大值,最大值为48【解析】【分析】(1)由BC=x,求得BD=3x,AB=8-

18、x,利用矩形养殖场的总面积为36,列一元二次方程,解方程即可求解;(2)设矩形养殖场的总面积为S,列出矩形的面积公式可得S关于x的函数关系式,再根据二次函数的性质求解即可(1)解:BC=x,矩形CDEF的面积是矩形BCFA面积的2倍,CD=2x,BD=3x,AB=CF=DE=(24-BD)=8-x,依题意得:3x(8-x)=36,解得:x1=2,x2=6(不合题意,舍去),此时x的值为2m; ;(2)解:设矩形养殖场的总面积为S,由(1)得:S=3x(8-x)=-3(x-4)2+48,-30,当x=4m时,S有最大值,最大值为48,【点睛】本题考查了一元二次方程和二次函数在几何图形问题中的应用

19、,数形结合并熟练掌握二次函数的性质是解题的关键8(1)A(-1,0);B(2m+1,0);C(0,2m+1);(2)(3)【解析】【分析】(1)分别令等于0,即可求得的坐标,根据,即可求得;(2)方法一:如图1,连接AE由解析式分别求得,根据轴对称的性质,可得,由,建立方程,解方程即可求解方法二:如图2,过点D作交BC于点H由方法一,得,证明,根据相似三角形的性质建立方程,解方程即可求解;(3)设PC与x轴交于点Q,当P在第四象限时,点Q总在点B的左侧,此时,即(1)当时,解方程,得,点A在点B的左侧,且,当时,(2)方法一:如图1,连接AE,点A,点B关于对称轴对称,即,解方程,得方法二:如

20、图2,过点D作交BC于点H由方法一,得,即,解方程,得(3)设PC与x轴交于点Q,当P在第四象限时,点Q总在点B的左侧,此时,即,解得,又,【点睛】本题考查了二次函数综合,求二次函数与坐标轴的交点,角度问题,解直角三角形,相似三角形的性质,三角形内角和定理,综合运用以上知识是解题的关键9(1)300,240(2)当时,选择乙超市更优惠,当时,两家超市的优惠一样,当时,选择乙超市更优惠,当时,选择甲超市更优惠【解析】【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购买x件这种文化用品,所花费用为y元, 可得当时, 显然此时选择乙超市更优惠,当时 再分三种情况讨论即可(1)

21、解: 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),乙超市全部按标价的8折售卖,该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),故答案为:(2)设单位购买x件这种文化用品,所花费用为y元,又当10x=400时,可得 当时, 显然此时选择乙超市更优惠,当时,当时,则 解得:当时,两家超市的优惠一样,当时,则 解得:当时,选择乙超市更优惠,当时,则 解得:当时,选择甲超市更优惠【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键10(

22、1) ;(2)20dm;(3)能切得半径为3dm的圆【解析】【分析】(1)先把二次函数解析式求出来,设正方形的边长为2m,表示在二次函数上点的坐标,代入即可得到关于m的方程进行求解;(2)如详解2中图所示,设矩形落在AB上的边DE=2n,利用函数解析式求解F点坐标,进而表示出矩形的周长求最大值即可;(3)为了保证尽可能截取圆,应保证圆心H坐标为(0,3),表示出圆心H到二次函数上个点之间的距离与半径3进行比较即可(1)由题目可知A(-4,0),B(4,0),C(0,8)设二次函数解析式为y=ax+bx+c,对称轴为y轴,b=0,将A、C代入得,a=,c=8则二次函数解析式为,如下图所示,正方形

23、MNPQ即为符合题意得正方形,设其边长为2m,则P点坐标可以表示为(m,2m)代入二次函数解析式得,解得(舍去),2m=,则正方形的面积为;(2)如下如所示矩形DEFG,设DE=2n,则E(n,0)将x=n代入二次函数解析式,得,则EF=,矩形DEFG的周长为:2(DE+EF)=2(2n+)=,当n=2时,矩形的周长最大,最大周长为20dm;(3)如下图所示,为了保证尽可能截取圆,应保证圆心H坐标为(0,3),则圆心H到二次函数上个点之间的距离为,能切得半径为3dm的圆【点睛】本题考查了二次函数与几何结合,熟练掌握各图形的性质,能灵活运用坐标与线段长度之间的转换是解题的关键11(1)(2)证明

24、见解析,(3)或【解析】【分析】(1)二次函数与轴交于 (0,0),A(4,0)两点,代入求得b,c的值,即可得到二次函数的表达式;(2)由,得到顶点C的坐标是(2,2),抛物线和对称轴为直线x2,由抛物线的对称性可知OCAC,得到CABCOD,由折叠的性质得到ABCBC,得CAB,ABB,进一步得到COD,由对顶角相等得ODCBD,证得结论;由,得到,设点D的坐标为(d,0),由两点间距离公式得DC,在0d4的范围内,当d2时,DC有最小值为,得到的最小值,进一步得到的最小值;(3)由和得到 ,求得BAB1,进一步得到点B的坐标是(3,0),设直线BC的解析式为yx,把点B(3,0),C(2

25、,2)代人求出直线BC的解析式为y2x6,设点的坐标是(p,q),则线段A的中点为(,),由折叠的性质知点(,)在直线BC上,求得q2p4,由两点间距离公式得B,解得p2或p,求得点的坐标,设直线的解析式为yx,由待定系数法求得直线的解析式为yx4,联立直线和抛物线,解方程组即可得到答案(1)解:二次函数与轴交于 (0,0), (4,0)两点,代入 (0,0), (4,0)得,解得:,二次函数的表达式为;(2)证明: ,顶点C的坐标是(2,2),抛物线的对称轴为直线x2,二次函数与轴交于(0,0),(4,0)两点,由抛物线的对称性可知OCAC,CABCOD,沿折叠后,点落在点的位置,线段与轴交

26、于点, ABCBC,CAB,ABB,COD,ODCBD,;,设点D的坐标为(d,0),由两点间距离公式得DC,点与、点不重合,0d4,对于 来说, a10,抛物线开口向上,在顶点处取最小值,当d2时,的最小值是4,当d2时,DC有最小值为,由两点间距离公式得OC,有最小值为,的最小值为;(3)解:, ,OC2,BAB1,点B的坐标是(3,0),设直线BC的解析式为yx,把点B(3,0),C(2,2)代人得,解得,直线BC的解析式为y2x6,设点的坐标是(p,q),线段A的中点为(,),由折叠的性质知点(,)在直线BC上,26,解得q2p4,由两点间距离公式得B,整理得1,解得p2或p,当p2时

27、,q2p40,此时点(2,0),很显然不符合题意,当p时,q2p4,此时点(,),符合题意,设直线的解析式为yx,把点B(3,0),(,)代人得,解得,直线的解析式为yx4,联立直线和抛物线得到,解得,直线与二次函数的交点横坐标为或【点睛】此题是二次函数综合题,主要考查了待定系数求函数的表达式、两点间距离公式、相似三角形的判定和性质、中点坐标公式、一次函数的图象和性质、二次函数的图象和性质、图形的折叠等知识,难度较大,属于中考压轴题,数形结合是解决此问题的关键12(1)k的值为,的值为6(2)或【解析】【分析】(1)把代入,先求解k的值,再求解A的坐标,再代入反比例函数的解析式可得答案;(2)

28、先求解由为x轴上的一动点,可得由,建立方程求解即可(1)解:把代入,得把代入,得把代入,得k的值为,的值为6(2)当时,为x轴上的一动点,或【点睛】本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键13(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m的最大值为22【解析】【分析】(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元,根据总费用列方程组即可;(2)设水果店第三次购进x千克甲种水果,根据题意先求出x的取值范围,再表示出总利润w与x的关系式,根据一次函数的性质判断即可(1)设

29、甲种水果的进价为每千克a元,乙种水果的进价为每千克b元根据题意,得解方程组,得答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)设水果店第三次购进x千克甲种水果,则购进千克乙种水果,根据题意,得解这个不等式,得设获得的利润为w元,根据题意,得,w随x的增大而减小当时,w的最大值为根据题意,得解这个不等式,得正整数m的最大值为22【点睛】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值14(1),(2)【解析】【分析】(1)通过点P坐标求出反比例函数解析

30、式,再通过解析式求出点Q坐标,从而解出PQ一次函数解析式;(2)令PQ与轴的交点为M,则三角形POQ的面积为OM乘以点P横坐标除以2加上OM乘以点Q横坐标除以2即可(1)将代入,解得,反比例函数表达式为当时,代入,解得,即将、代入,得,解得一次函数表达式为(2)设一次函数的图像与轴交点为,将代入,得,即,【点睛】本题考查待定系数法求反比例函数解析式、一次函数解析式、求一次函数和反比例函数围成的三角形面积,掌握拆分法是解本题关键15(1)(2)见解析(3)最大值为【解析】【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案;(2)先根据顶点坐标公式求出顶点坐

31、标为,然后分别证明顶点坐标的横纵坐标都小于0即可;(3)设平移后图像对应的二次函数表达式为,则其顶点坐标为,然后求出点B的坐标,根据平移后的二次函数顶点在直线上推出,过点作,垂足为,可以推出,由此即可求解(1)解:将代入,解得由,则符合题意,(2)解:由抛物线顶点坐标公式得顶点坐标为,二次函数的顶点在第三象限(3)解:设平移后图像对应的二次函数表达式为,则其顶点坐标为当时,将代入,解得在轴的负半轴上,过点作,垂足为,在中,,当时,此时,面积有最大值,最大值为【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数的平移,二次函数的最值问题,正确理解题意,熟练掌握二次函数的相关知识是解题的关键答案第32页,共32页

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 分类汇编