2020-2021学年苏科版八年级下数学全册知识梳理

上传人:争先 文档编号:185262 上传时间:2021-06-09 格式:DOCX 页数:11 大小:134.49KB
下载 相关 举报
2020-2021学年苏科版八年级下数学全册知识梳理_第1页
第1页 / 共11页
2020-2021学年苏科版八年级下数学全册知识梳理_第2页
第2页 / 共11页
2020-2021学年苏科版八年级下数学全册知识梳理_第3页
第3页 / 共11页
2020-2021学年苏科版八年级下数学全册知识梳理_第4页
第4页 / 共11页
2020-2021学年苏科版八年级下数学全册知识梳理_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、八年级下册知识梳理八年级下册知识梳理 第七章第七章 数据的收集、整理和描述数据的收集、整理和描述 数据的收集、整理与描述数据的收集、整理与描述 知识概念 抽样与样本抽样与样本 1.全面调查:考察全体对象的调查方式叫做全面调查。 2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3.总体:要考察的全体对象称为总体。 4.个体:组成总体的每一个考察对象称为个体。 5.样本:被抽取的所有个体组成一个样本。 6.样本容量:样本中个体的数目称为样本容量。 频率分布频率分布 1、频率分布的意义 在许多问题中, 只知道平均数和方差还不够, 还需要知道样本中数据在各个小范围所占的比例的大

2、小, 这就需要研究如何对一组数据进行整理,以便得到它的频率分布。 2、研究频率分布的一般步骤及有关概念 (1)研究样本的频率分布的一般步骤是: 计算极差(最大值与最小值的差) 决定组距与组数 决定分点 列频率分布表 画频率分布直方图 (2)频率分布的有关概念 极差:最大值与最小值的差 频数:落在各个小组内的数据的个数 全面调查 抽样调查 收 集 数 据 描 述 数 据 整 理 数 据 分 析 数 据 得 出 结 论 频率:每一小组的频数与数据总数(样本容量 n)的比值叫做这一小组的频率。 第八章第八章 认识概率认识概率 确定事件和随机事件确定事件和随机事件 1、确定事件 必然发生的事件:在一定

3、的条件下重复进行试验时,在每次试验中必然会发生的事件。 不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。 2、随机事件: 在一定条件下,可能发生也可能不放声的事件,称为随机事件。 随机事件发生的可能性随机事件发生的可能性 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。 对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的 大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可 能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。 概

4、率的意义与表示方法概率的意义与表示方法 1、概率的意义 一般地,在大量重复试验中,如果事件 A 发生的频率 m n 会稳定在某个常数 p 附近,那么这个常数 p 就 叫做事件 A 的概率。 2、事件和概率的表示方法 一般地,事件用英文大写字母 A,B,C,表示事件 A 的概率 p,可记为 P(A)=P 确定事件和随机事件的概率之间的关系确定事件和随机事件的概率之间的关系 1、确定事件概率 当 A 是不可能发生的事件时,P(A)=0 2、确定事件和随机事件的概率之间的关系 不可能事件 随机事件 必然事件 第九章第九章 中心对称图形中心对称图形 在平面内,将一个图形绕一个定点转动一定角度,这样的图

5、形运动叫旋转,这个定点称为旋转 中心,旋转角度称为旋转角 图形旋转的性质: 1、旋转前、后图形全等 2、对应点到旋转中心的距离相等 3、每对对应点与旋转中心的连所成的叫彼此相等 中心对称:把一个图形绕某点旋转 180,如果它能与另一个图形重合,那么这两个图形关于 这一点城中心对称 中心对称的性质: 1.、具有旋转图形的所有性质 2、对应点连线都经过对称中心,并且被对称中心平分 中心对称图形 把一个平面图形绕某一点旋转 180,如果旋转后的图形与原图形完全重合,那么这个图形式 中心对称图形,这个点是对称中心 平行四边形:两组对边分别平行的四边形叫平行四边形 平行四边形的性质: 1、平行四边形对边

6、相等 2、平行四边形对角相等 3、平行四边形对角线互相平分 平行四边形的判定: 1、两组对边分别平行的四边形是平行四边形 2、一组对边平行且相等的四边形是平行四边形 3、两条对角线互相平分的四边形是平行四边形 4、两组对边分别别相等的四边形是平行四边形 矩形: 有一个角是直角的平行四边形是矩形 矩形的性质: 1、所有平行四边形的性质 2、对角线相等 1、四个角都是直角 矩形的判定: 1、有一个角是直角的平行四边形是矩形 2、有 3 个角是直角的四边形正是矩形 3、对角线相等的平行四边形是矩形 菱形:有一组邻边相等的平行四边形是菱形 菱形的性质: 1、所有平行四边形的性质 2、四边相等 3、对角

7、线相互垂直,且每条对角线平分一组对角 菱形的判定: 1、有一组邻边相等的平行四边形是菱形 2、四边都相等的四边形是菱形 3、对角线相互垂直的平行四边形是菱形 正方形:有一组邻边相等且一个角为直角的平行四边形是正方形 三角形中位线:连接三角形两边中点的线段叫三角形的中位线 三角形中位线的性质: 三角形中位线平行于第三边且等于它的一半 梯形中位线:连接梯形两腰中点的线段叫梯形中位线 梯形中位线的性质:梯形中位线平行于两底,且等于两底和的一半 补充补充:平行四边形平行四边形 1、平行四边形:两组对边分别平行的四边形叫做平行四边形。 2、平行四边形性质定理 1:平行四边形的对角相等。 3、平行四边形性

8、质定理 2:平行四边形的对边相等。 4、平行四边形性质定理 2 推论:夹在平行线间的平行线段相等。 5、平行四边形性质定理 3:平行四边形的对角线互相平分。 6、平行四边形判定定理 1:一组对边平行且相等的四边形是平行四边形。 7、平行四边形判定定理 2:两组对边分别相等的四边形是平行四边形。 8、平行四边形判定定理 3:对角线互相平分的四边形是平行四边形。 9、平行四边形判定定理 4:两组对角分别相等的四边形是平行四边形。 说明: (1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。同时又是证明线段相等, 角相等或两条直线互相平行的重要方法。 (2)平行四边形的定义即是平行四边形的

9、一个性质,又是平行四边形的一个判定方法。 三、矩形 矩形是特殊的平行四边形, 从运动变化的观点来看, 当平行四边形的一个内角变为 90时, 其它的边、角位置也都随之变化。因此矩形的性质是在平行四边形的基础上扩充的。 1、矩形:有一个角是直角的平行四边形叫做矩形(通常也叫做长方形) 2、矩形性质定理 1:矩形的四个角都是直角。 3矩形性质定理 2:矩形的对角线相等。 4、矩形判定定理 1:有三个角是直角的四边形是矩形。 说明:因为四边形的内角和等于 360 度,已知有三个角都是直角,那么第四个角必定是直角。 5、矩形判定定理 2:对角线相等的平行四边形是矩形。 说明:要判定四边形是矩形的方法是:

10、 法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明) 法二:先证明出是平行四边形,再证出对角线相等(这是判定定理 1) 法三:只需证出三个角都是直角。 (这是判定定理 2) 四、菱形 菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边 形变成了菱形。 1、菱形:有一组邻边相等的平行四边形叫做菱形。 2、菱形的性质 1:菱形的四条边相等。 3、菱形的性质 2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。 4、菱形判定定理 1:四边都相等的四边形是菱形。 5、菱形判定定理 2:对角线互相垂直的平行四边形是菱形。 说明:要判定四边形是菱形的方

11、法是: 法一:先证出四边形是平行四边形,再证出有一组邻边相等。 (这就是定义证明) 。 法二:先证出四边形是平行四边形,再证出对角线互相垂直。 (这是判定定理 2) 法三:只需证出四边都相等。 (这是判定定理 1) (五)正方形 正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边 相等,这样就形成了正方形。 1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。 2、正方形性质定理 1:正方形的四个角都是直角,四条边都相等。 3、正方形性质定理 2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。 4、正方形判定定理互:两条

12、对角线互相垂直的矩形是正方形。 5、正方形判定定理 2:两条对角线相等的菱形是正方形。 注意:要判定四边形是正方形的方法有 方法一:第一步证出有一组邻边相等; 第二步证出有一个角是直角;第三步证出是平行四边形。 (这 是用定义证明) 方法二:第一步证出对角线互相垂直;第二步证出是矩形。 (这是判定定理 1) 方法三:第一步证出对角线相等;第二步证出是菱形。 (这是判定定理 2) 六、 中位线 1、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。 说明:三角形的中位线与三角形的中线不同。 2、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 第十章第十章 分式分式

13、1、分式定义:形如 B A 的式子叫分式,其中 A、B 是整式,且 B 中含有字母。 (1)分式无意义:B=0 时,分式无意义; B0 时,分式有意义。 (2)分式的值为 0:A=0,B0 时,分式的值等于 0。 (3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式 分解,再约去公因式。 (4) 最简分式: 一个分式的分子与分母没有公因式时, 叫做最简分式。 分式运算的最终结果若是分式, 一定要化为最简分式。 (5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。 (6)最简公分母:各分式的分母所有因式的最高次幂的积。 (

14、7)有理式:整式和分式统称有理式。 2、分式的基本性质: (1))0(的整式是 M MB MA B A ; (2))0(的整式是 M MB MA B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算: (1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成 同分母的分式再相加减。 (2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。 (3)除:除以一个分式等于乘上它的倒数式。 (4)乘方:分式的乘方就是把分子、分母分别乘方。 4、分式方程 (1)分式方程 分母里含有未知数的

15、方程叫做分式方程。 (2)分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程” 。它 的一般解法是: 1)去分母,方程两边都乘以最简公分母 2)解所得的整式方程 3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的 根。 3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般 的去分母不易解决时,可考虑用换元法。 (补充) 列方程(组)解应用题常见类型题及其等量关系;列方程(组)解应用题常见类型题及其等量关系; 1、工程问题 (1)基本工作量的关系:工作量=工作效率工作时

16、间 (2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量 (3)注意:工程问题常把总工程看作“1” ,水池注水问题属于工程问题 2、行程问题 (1)基本量之间的关系:路程=速度时间 (2)常见等量关系: 相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快) : 同时不同地:甲的时间=乙的时间;甲走的路程乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间时间差;甲的路程=乙的路程 3、水中航行问题: 顺流速度=船在静水中的速度+水流速度; 逆流速度=船在静水中的速度水流速度 4、增长率问题: 常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量(

17、1+增长率) ; 5、数字问题: 基本量之间的关系:三位数=个位上的数+十位上的数10+百位上的数100 列方程解应用题的常用方法列方程解应用题的常用方法 1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内 在联系找出等量关系。 2、线示法:就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内在联系,找出 等量关系。 3、列表法:就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。 4、图示法:就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助 我们更好地理解题意。 第十一章第十一章 反比例函数反比例

18、函数 反比例函数的概念 一般地,函数 x k y (k 是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成 1 kxy的 形式。自变量 x 的取值范围是 x0 的一切实数,函数的取值范围也是一切非零实数。 2、反比例函数的图像 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限, 它们关于原点对称。 由于反比例函数中自变量 x0, 函数 y0, 所以, 它的图像与 x 轴、 y 轴都没有交点, 即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 3、反比例函数的性质 反比例函 数 )0(k x k y k 的符号 k0 k0 时,函数图像的两个分

19、支分别 在第一、三象限。在每个象限内,y 随 x 的增大而减小。 x 的取值范围是 x0, y 的取值范围是 y0; 当 k0 时,函数图像的两个分支分别 在第二、四象限。在每个象限内,y 随 x 的增大而增大。 4、反比例函数解析式的确定 确定及诶是的方法仍是待定系数法。由于在反比例函数 x k y 中,只有一个待定系数,因此只需要一 对对应值或图像上的一个点的坐标,即可求出 k 的值,从而确定其解析式。 5、反比例函数中反比例系数的几何意义 如下图,过反比例函数)0(k x k y图像上任一点 P 作 x 轴、y 轴的垂线 PA,PB,则所得的矩形 PMON 的面积 S=PAPB=xyxy

20、。 kSkxy x k y,。 y x o o y x 第十二章第十二章 二次根式二次根式 1、二次根式的概念:式子)0( aa叫做二次根式。 (1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次 根式叫最简二次根式。 (2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。 (3)分母有理化:把分母中的根号化去叫做分母有理化。 (4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两 个代数式互为有理化因式(常用的有理化因式有:a与a;dcba与dcba) 2、二次根式的性质: (1) )0()( 2 aaa; (2) )0( )0( 2 aa aa aa; (3)baab(a0,b0) ; (4))0, 0(ba b a b a 3、运算: (1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。 (2)二次根式的乘法:abba(a0,b0) 。 (3)二次根式的除法:)0, 0(ba b a b a 二次根式运算的最终结果如果是根式,要化成最简二次根式。

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 苏科版 > 八年级下册