【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程学案(学生版)

上传人:hua****011 文档编号:160312 上传时间:2020-11-05 格式:DOCX 页数:12 大小:354.36KB
下载 相关 举报
【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程学案(学生版)_第1页
第1页 / 共12页
【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程学案(学生版)_第2页
第2页 / 共12页
【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程学案(学生版)_第3页
第3页 / 共12页
【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程学案(学生版)_第4页
第4页 / 共12页
【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程学案(学生版)_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、 二次函数与一元二次方程 第10讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1. 二次函数与一元二次方程 2. 二次函数与不等式 3. 二次函数与方程和不等式综合 教学目标 1.掌握二次函数与一元二次方程的联系 2.掌握二次函数与不等式的联系 3.掌握利用函数图像解决实际问题 教学重点 能熟练掌握二次函数与一元二次方程的联系 教学难点 能熟练掌握二次函数与一元二次方程的联系 【教学建议】【教学建议】 本节课的内容在二次函数中占有着重要的地位,也是中考中的必考内容。函数是方程和不等式的高级 形式,借助图象,可以用函数的观点去统领一元二次方

2、程和一元二次不等式,在实际问题中有着重要的应 用。在教学中要让学生充分体会到处理函数问题的方法:“胸中有图,见数想图”。 学生学习本节时可能会在以下三个方面感到困难: 1. 二次函数与 x 轴的交点的横坐标就是对应一元二次方程的根; 2. 由图象判别函数值的情况。 3.对 hcbxax 2 的不同理解方式。 【知识导图】【知识导图】 二次函数与一元二次方程 二次函数与一元二次方程 二次函数与不等式 二次函数与方程和不等式综合 概述 【教学建议】【教学建议】 二次函数是中考数学中最重要的内容之一,对于学生来说也是最难的内容。属于中考数学的必考内容,函 数是方程和不等式的高级形式,本节课主要是用函

3、数的观点去统领对应的一元二次方程和一元二次不等式, 可以全面考察学生的读图识图能力,在中考数学试卷中,也是必考题,一般不单独设题,常与其它知识融 合在一起考。 二次函数 y=ax 2+bx+c 与一元二次方程 ax2+bx+c=0 的关系. (1)一般地,二次函数 y=ax 2+bx+c 的图象与 x 轴交点的横坐标就是一元二次方程 ax2+bx+c=0 的根;当二次 函数 y=ax 2+bx+c 的函数值为 0 时,相应的自变量的值即是一元二次方程 ax2+bx+c=0 的根; (2)若抛物线 y=ax 2+bx+c 与 x 轴的两个交点坐标分别为( 1,0 x ), 2 (,0)x ,那么

4、对应方程 ax 2+bx+c=0 的两个根 即为 12 ,x x,结合一元二次方程根与系数关系可知 12 , b xx a 12 c xx a (3)二次函数与 x 轴的交点情况和一元二次方程根的情况的关系具体见下表: 二次函数 y=ax 2+bx+c 与 x 轴交点情况 a0 两个交点 一个交点 没有交点 a0 两个交点 一个交点 没有交点 教学过程 一、导入 二、知识讲解 知识点 1 二次函数与一元二次方程 2 4bac的值 2 40bac 2 40bac 2 40bac 一元二次方程 ax 2+ bx+c=0 根的情 况 有两个不相等的实根 有两个相等的实根 没有实根 二次函数与一元二次

5、不等式解集的关系二次函数与一元二次不等式解集的关系 (1)从“形”的方面看二次函数 y=ax 2+bx+c 在 x 轴上方的图象上的点的横坐标,即为 ax2+bx+c0 的解集, 在 x 轴下方的图象上的点的横坐标,即为 ax 2+bx+c0 的解集;从“数”的方面看,当二次函数 y=ax2+bx+c 的函数值大于 0 时,相应的自变量的值即为不等式 ax 2+bx+c0 的解集,当二次函数 y=ax2+bx+c 的函数值小 于 0 时,相应的自变量的值即为不等式 ax 2+bx+c0 b 2-4ac=0 b 2-4acy2,求实数 n 的取值范围。 【题干】【题干】二次函数 y=ax 2+b

6、x+c(a0)的图象如图所示,根据图象解答下列问题: (1)方程 ax 2+bx+c=0 的两个根是 ; (2)不等式 ax 2+bx+c0 的解集是 ; (3)y 随 x 的增大而减小的自变量 x 的取值范围是 。 知识点 3 二次函数与方程和不等式综合 三、例题精析 例题 1 例题 2 例题 3 (4)若方程 ax 2+bx+c=k 有两个不相等的实数根,则 k 的取值范围是。 【题干】【题干】在平面直角坐标系 xOy 中,已知抛物线 yx 22(k1)xk25 2 k(k 为常数) (1)若抛物线经过点(1,k 2),求 k 的值 (2)若抛物线经过点(2k,y1)和点(2,y2),且

7、y1y2,求 k 的取值范围 (3)若将抛物线向右平移 1 个单位长度得到新抛物线,当 1x2 时,新抛物线对应的函数有最小值 3 2 ,求 k 的值 【教学建议】【教学建议】 在讲解过程中,教师可以以中考真题入手,重点放在用二次函数的观点去看对应的一元二次方程和一元二 次不等式,教师在教学中,先把例题讲解清晰,帮助学生形成相应的知识结构图;再给学生做针对性的练 习,抓住它们三者之间的内在逻辑联系。 1.一元二次方程 ax 2+bx+c=h 的根就是二次函数 y=ax2+bx+c 的图像与直线 交点的 坐标。 2.在平原上,一门迫击炮发射的一发炮弹飞行的高度 y(m)与飞行时间 x(s)的关系

8、满足 y= 1 5 x 2+1Ox. (1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少? (2)经过多长时间,炮弹落在地上爆炸? 3. “如果二次函数 y=ax 2+bx+c 的图象与 x 轴有两个公共点,那么一元二次方程 ax2+bx+c=0 有两个不相等的实 数根。”请根据你对这句话的理解,解决下面问题:若 m、n(mn)是关于 x 的方程 1(xa)(xb)=0 的两根, 且 ab,则 a、b、m、n 的大小关系是( ) A. mabn B.amnb C.ambn D.manb 例题 4 四 、课堂运用 基础 1.当 m 取何值时,抛物线 y=x 2与直线 y=xm (1)有公

9、共点; (2)没有公共点 2.已知关于 x 的方程 x 2(2k3)x+k2+1=0 有两个不相等的实数根 x 1、x2. (1)求 k 的取值范围; (2)试说明 x10,x20. 解:设 y=x 22x3,则 y 是 x 的二次函数.a=10,抛物线开口向上。 又当 y=0 时,x 22x3=0,解得 x 1=1,x2=3. 由此得抛物线 y=x 22x3 的大致图象如图所示。 观察函数图象可知:当 x3 时,y0. x 22x30 的解集是:x3. (1)观察图象,直接写出一元二次不等式:x 22x30.(大致图象画在答题卡上) 回忆以下三个方面的知识: 1.二次函数与一元二次方程 2.

10、二次函数与不等式 3.二次函数与方程和不等式综合 1. 已知二次函数 y=ax 2+bx+c(a0)的顶点坐标(1,3.2)及部分图象(如图), 由图象可知关于 x 的一元二次 方程 ax 2+bx+c=0 的两个根分别是 x 1=1.3 和 x2=( ) A. 1.3 B. 2.3 C. 0.3 D. 3.3 2. 如图, 以 (1, -4) 为顶点的二次函数 y=ax 2+bx+c 的图象与 x 轴负半轴交于 A 点, 则一元二次方程 ax2+bx+c=0 的正数解的范围是( ) A2x3 B3x4 C4x5 D5x6 课堂小结 拓展延伸 基础 3.已知二次函数 y2(x1)(xm3)(m

11、 为常数) (1)求证:不论 m 为何值,该函数的图像与 x 轴总有公共点; (2)当 m 取什么值时,该函数的图像与 y 轴的交点在 x 轴的上方? 1. 已知二次函数 yx 2 2xm 的图象 C1与 x 轴有且只有一个公共点。 (1)求 C1 的顶点坐标; (2)将 C1向下平移若干个单位后,得抛物线 C2,如果 C2与 x 轴的一个交点为 A(3,0),求 C2 函数关 系式,并求 C 2与 x 轴的另一个交点的坐标 2.已知二次函数 yax 2bxc 的图象如图所示,对称轴为直线 x1,则下列结论正确的是( ) A. ac0 B.方程 ax 2+bx+c=0 的两根是 x 1=-1,

12、x2=3 C. 2a-b=0 D.当 y0 时,y 随 x 的增大而减小. 3.阅读材料,解答问题 利用图象法解一元二次不等式:x 2+2x-30 解:设y=x 2+2x-3,则y是x的二次函数a=10,抛物线开口向上 又当y=0时,x 2+2x-3=0,解得x 1=1,x2=-3 由此得抛物线y=x 2+2x-3的大致图象如图所示 观察函数图象可知:当-3x1时,y0 x 2+2x-30的解集是:-3x1时 巩固 (1)观察图象,直接写出一元二次不等式:x 2+2x-30的解集 (2)仿照上例,用图象法解一元二次不等式:-2x 2-4x+60 (3)不等式 2x 2-4x+60 有解吗?若有

13、,求出其解集;若没有请结合图象说明理由 1.已知抛物线与轴交于点,与轴交于,两点,顶点的 纵坐标为,若,是方程的两根,且 (1)求,两点坐标; (2)求抛物线表达式及点坐标; (3)在抛物线上是否存在着点,使面积等于四边形面积的 2 倍,若存在,求出点坐 标;若不存在,请说明理由 2.如图,若二次函数 2 yaxbxc(a0)图象的对称轴为 x1,与 y 轴交于点 C,与 x 轴交于点 A、点 B(1,0)则二次函数的最大值为 abc;abc0;b4ac0;当 y0 时,1x 3其中正确的个数是( ) 2 yaxbxcyCx 1 (0)A x, 212 (0)()B xxx,M 4 1 x 2 x 22 2(1)70 xmxm 22 12 10 xx AB C PPABACMBP 拔高 A1 B2 C3 D4 3.如图,抛物线 2 45 7 2 1 2 xxy与 x 轴的交于点 A、B,把抛物线在 x 轴即其下方的部分记作 C1,将 C1向左平移得 C2,C2与 x 轴的交于点 B、D若直线mxy 2 1 与 C1、C2共有三个不同的交点,则 m 的取值范围是 A 2 5 -m 8 45 B 2 1 -m 8 29 C 2 5 -m 8 29 D 2 1 -m 8 45 x y -1 B O C A x=1

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 培训复习班资料 > 初三下