1、 二次函数综合 第11讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.二次函数与三角形的面积 2.二次函数与线段和差 3.二次函数与直角三角形 教学目标 1.掌握解二次函数综合题的方法 2.掌握二次函数中的数学模型 教学重点 能熟练掌握二次函数综合问题 教学难点 能熟练掌握二次函数综合问题 【教学建议】【教学建议】 本节课的内容属于二次函数综合,是中考中的必考内容。在教学中教师要通过典型例题帮助学生整理、 归纳并反思这些问题的常用处理方法,学会怎么把非特殊问题转换成特殊问题的,形成有效的解题策略。 学生学习本节时可能会在以下三个方面感到
2、困难: 1. 非特殊三角形的面积问题; 2. 非竖直型线段的最值; 3.抛物线中直角三角形的存在性问题。 【知识导图】【知识导图】 二次函数综合 二次函数与三角形的面积 二次函数与线段和差 二次函数与直角三角形 概述 【教学建议】【教学建议】 本节所讲的三个问题:1.二次函数与三角形的面积;2.二次函数与线段和差;3.二次函数与直角三角形。 是二次函数考题中常出现的题型,而且常常是在二次函数的压轴题中出现。建议教师在教学中,可以采取 一题多解的方式,从多个角度切入问题,以期帮助孩子形成有效地解题策略,要把典例讲透,要让学生有 自己的反思,自己的总结,自己的收获。 1.常用面积的处理方法: 2.
3、坐标系中的铅锤法模型 教学过程 一、导入 二、知识讲解 知识点 1 二次函数与三角形的面积 二次函数中的线段线段和差问题,常通过三角函数转移到竖直方向的和差或水平方向的和差,其中竖直方 向的和差最重要,可以用上面点的纵坐标减去下面的点的纵坐标,极易出现二次式,也就是二次函数模型。 为了便于学生记忆:我给它起了一个名字叫“定海神针”。 抛物线中出现直角三角形常见的处理方法: 已知:定点 A(2, 1) 、B(6, 4)和动点 M(m, 0), 存在直角三角形 ABM,求点 M 的坐标. 1.两线一圆 在平面直角坐标系中遇到直角三角形的相关问题后,通常是以顶点作为分类标准,比如:当以点A为直角顶点
4、 时,过点 A 作 AB 的垂线交 x 轴的点即为所求; 当以点 B 为直角顶点时,过点 B 作 AB 的垂线交 x 轴的点即为 所求;当以点 M 为直角顶点时,只需要以 AB 为直径作辅助圆与 x 轴的交点即为所求. 提示:两直线垂直,则其 K 值得乘积为-1,通过求垂线的解析式再求其与 x 轴的交点即可.(请学生完成做题 过程) 2.“K 型相似” 知识点 2 二次函数与线段和差 知识点 3 二次函数与直角三角形 提示:竖直型,上减下;水平型,右减左.遇直角,构矩形,得相似,求结果.(请学生完成做题过程) 3.暴力法(两点间距离公式) 利用两点间距离公式.勾股定理及其逆定理的应用进行求解.
5、其基本解题思路是列点.列线.列式. 第一步,列出构建所求直角三角形的三个点,定点找到后,动点用参数表示其坐标; 第二步,采用分类讨论思想,列出构建所求直角三角形的三个边,并分类讨论两两垂直的三种可能性; 第三步,把定点坐标及参数点坐标代入两点间距离公式,利用勾股定理的逆定理列出等式求解.注意:解出点 的坐标应结合已知进行检验,若出现三点共线或出现不合题意得点均要舍去.(请学生完成做题过程) 注意:有时根据直角三角形斜边上的中线等于斜边的一半列方程更简单,在一些综合题中一般要结合“K 型 相似”去做更简单一些. 【题干】如图,在平面直角坐标系中,直线 1 1 2 yx与抛物线 yax 2bx3
6、交于 A、B 两点,点 A 在 x 轴上,点 B 的纵坐标为 3点 P 是直线 AB 下方的抛物线上的一动点(不与点 A、B 重合),过点 P 作 x 轴 的垂线交直线 AB 于点 C,作 PDAB 于点 D (1)求 a、b 及 sinACP 的值; (2)设点 P 的横坐标为 m 用含 m 的代数式表示线段 PD 的长,并求出线段 PD 长的最大值; 连结 PB,线段 PC 把PDB 分成两个三角形,是否存在适合的 m 的值,使这两个三角形的面积比为 9 10?若存在,直接写出 m 的值;若不存在,请说明理由 三、例题精析 例题 1 【题干】【题干】已知平面直角坐标系中两定点 A(1, 0
7、)、B(4, 0),抛物线 yax 2bx2(a0)过点 A、B, 顶点为 C,点 P(m, n)(n0)为抛物线上一点 (1)求抛物线的解析式和顶点 C 的坐标; (2)当APB 为钝角时,求 m 的取值范围; (3)若 m,当APB 为直角时,将该抛物线向左或向右平移 t(0t)个单位,点 C、P 平 移后对应的点分别记为 C、P,是否存在 t,使得顺次首尾连接 A、B、P、C所构成的多边形的周长 最短?若存在,求 t 的值并说明抛物线平移的方向;若不存在,请说明理由 【题干】【题干】如图 1,二次函数 ya(x 22mx3m2)(其中 a、m 是常数,且 a0,m0)的图像与 x 轴分别
8、 交于 A、B(点 A 位于点 B 的左侧),与 y 轴交于点 C(0,3),点 D 在二次函数的图像上,CD/AB,联结 AD过点 A 作射线 AE 交二次函数的图像于点 E,AB 平分DAE (1)用含 m 的式子表示 a; (2)求证:为定值; (3)设该二次函数的图像的顶点为 F探索:在 x 轴的负半轴上是否存在点 G,联结 GF,以线段 GF、 3 2 5 2 AD AE 例题 2 例题 3 B C D X O P A Y AD、 AE 的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点 G 即可, 并用含 m 的代数式表示该点的横坐标;如果不存在,请说明理由
9、【教学建议】【教学建议】 在讲解过程中,教师可以以中考真题入手,先把例题讲解清晰,注意总结相应测处理方法,形成有用的解 题模型,再给学生做针对性的练习。 1.如图 1,边长为 8 的正方形 ABCD 的两边在坐标轴上,以点 C 为顶点的抛物线经过点 A,点 P 是抛物线 上 A、C 两点间的一个动点(含端点),过点 P 作 PFBC 于点 F点 D、E 的坐标分别为(0, 6)、(4, 0), 联结 PD、PE、DE (1)直接写出抛物线的解析式; (2)小明探究点 P 的位置发现:当点 P 与点 A 或点 C 重合时,PD 与 PF 的差为定值进而猜想:对 于任意一点 P,PD 与 PF 的
10、差为定值请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使PDE 的面积为整数” 的点 P 记作“好点”,则存在多个 “好点”,且使PDE 的周长最小的点 P 也是一个“好点” 请直接写出所有“好点”的个数,并求出PDE 周长最小时“好点”的坐标 2.如图 1,在平面直角坐标系中,抛物线 yax 2bxc 经过 A(2, 4 )、O(0, 0)、 四 、课堂运用 基础 B(2, 0)三点 (1)求抛物线 yax 2bxc 的解析式; (2)若点 M 是该抛物线对称轴上的一点,求 AMOM 的最小值 图 1 3.如图 1,抛物线与 x 轴交于 A、B 两点(点 B 在点
11、 A 的右侧),与 y 轴交于点 C,连结 BC,以 BC 为一边,点 O 为对称中心作菱形 BDEC,点 P 是 x 轴上的一个动点,设点 P 的坐标为(m, 0), 过点 P 作 x 轴的垂线 l 交抛物线于点 Q (1)求点 A、B、C 的坐标; (2) 当点 P 在线段 OB 上运动时, 直线 l 分别交 BD、 BC 于点 M、 N 试探究 m 为何值时, 四边形 CQMD 是平行四边形,此时,请判断四边形 CQBM 的形状,并说明理由; (3)当点 P 在线段 EB 上运动时,是否存在点 Q,使BDQ 为直角三角形,若存在,请直接写出点 Q 的坐标;若不存在,请说明理由 图 1 1
12、.如图 1,在平面直角坐标系中,抛物线 yax 2bx3(a0)与 x 轴交于 A(2, 0)、B(4, 0)两点,与 y 轴交于点 C 2 13 4 42 yxx 巩固 (1)求抛物线的解析式; (2)点 P 从点 A 出发,在线段 AB 上以每秒 3 个单位长度的速度向点 B 运动,同时点 Q 从点 B 出发, 在线段 BC 上以每秒 1 个单位长度的速度向点 C 运动其中一个点到达终点时,另一个点也停止运动当 PBQ 存在时,求运动多少秒时PBQ 的面积最大,最大面积是多少? (3)当PBQ 的面积最大时,在 BC 下方的抛物线上存在点 K,使 SCBKSPBQ52,求点 K 的坐 标
13、图 1 2.已知平面直角坐标系中两定点 A(1, 0)、B(4, 0),抛物线 yax 2bx2(a0)过点 A、B,顶点为 C,点 P(m, n)(n0)为抛物线上一点 (1)求抛物线的解析式和顶点 C 的坐标; (2)当APB 为钝角时,求 m 的取值范围; (3)若 m,当APB 为直角时,将该抛物线向左或向右平移 t(0t)个单位,点 C、P 平 移后对应的点分别记为 C、P,是否存在 t,使得顺次首尾连接 A、B、P、C所构成的多边形的周长 最短?若存在,求 t 的值并说明抛物线平移的方向;若不存在,请说明理由 3.如图 1,抛物线与 x 轴交于 A、B 两点(点 A 在点 B 的左
14、侧),与 y 轴交于点 C (1)求点 A、B 的坐标; (2)设 D 为已知抛物线的对称轴上的任意一点,当ACD 的面积等于ACB 的面积时,求点 D 的坐 标; (3)若直线 l 过点 E(4, 0),M 为直线 l 上的动点,当以 A、B、M 为顶点所作的直角三角形有且只有 三个时,求直线 l 的解析式 3 2 5 2 2 33 3 84 yxx 图 1 1.如图 1,已知抛物线(b、c 是常数,且 c0)与 x 轴交于 A、B 两点(点 A 在点 B 的左 侧),与 y 轴的负半轴交于点 C,点 A 的坐标为(1,0) (1)b_,点 B 的横坐标为_(上述结果均用含 c 的代数式表示
15、); (2)连结 BC,过点 A 作直线 AE/BC,与抛物线交于点 E点 D 是 x 轴上一点,坐标为(2,0),当 C、 D、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点 P 是 x 轴下方的抛物线上的一动点,连结 PB、PC设PBC 的面积为 S 求 S 的取值范围; 若PBC 的面积 S 为正整数,则这样的PBC 共有_个 图 1 2.如图,抛物线 y=ax 2+bx 经过OAB 的三个顶点,其中点 A(1, ),点 B(3,),O 为坐标原点 (1)求这条抛物线所对应的函数表达式; (2)若 P(4,m),Q(t,n)为该抛物线上的两点,且 nm,求 t 的
16、取值范围; (3)若 C 为线段 AB 上的一个动点,当点 A,点 B 到直线 OC 的距离之和最大时,求BOC 的大小及点 C 2 1 2 yxbxc 拔高 的坐标 3.在平面直角坐标系中,反比例函数与二次函数 yk(x 2x1)的图象交于点 A(1,k)和点 B(1,k) (1)当 k2 时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是 y 随 x 增大而增大,求 k 应满足的条件以及 x 的取值范围; (3)设二次函数的图象的顶点为 Q,当ABQ 是以 AB 为斜边的直角三角形时,求 k 的值 1.二次函数与三角形的面积的常见处理方法 2.二次函数与线段和差的常见处理方法
17、3.二次函数与直角三角形的常见处理方法 1. 如图,抛物线 yax 24xc(a0)经过点 A(1,0),点 E(4,5),与 y 轴交于点 B,连接 AB (1)求该抛物线的解析式; (2)将ABO 绕点 O 旋转,点 B 的对应点为点 F 课堂小结 拓展延伸 基础 当点 F 落在直线 AE 上时,求点 F 的坐标和ABF 的面积; 当点 F 到直线 AE 的距离为2时,过点 F 作直线 AE 的平行线与抛物线相交,请直接写出交点的坐标 2. 如图,已知二次函数1 2 axy为实数)aa, 0( 的图象过点)2 , 2(A,一次函数bkxy 为实数)bkk, 0( 的图象l经过点)2 , 0
18、(B. (1) 求a值并写出二次函数表达式; (2) 求b值; (3) 设直线l与二次函数图象交于NM、两点,过M作MC垂直x轴于点C, 试证明:MCMB; (4) 在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由. 3.如图,已知抛物线 2 13 (0) 22 yxxn n与 x 轴交于 A,B 两点(A 点在 B 点的左边),与 y 轴交于 点 C如图 1,若ABC 为直角三角形,求 n 的值。 x y -1 E B A O x y -1 E B A O 1.如图,在平面直角坐标系中,抛物线 2 5yaxbx交y轴于点A,交x轴于点( 5,0)B 和点(1,0)C,
19、 过点A作 ADx 轴交抛物线于点 D. (1)求此抛物线的表达式; (2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求EAD的面积; (3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,ABP的面积最大,求出此时 点P的坐标和ABP的最大面积 2.如图,在平面直角坐标系中,一次函数4 3 2 xy的图像与 x 轴和 y 轴分别相交于 A、B 两点。动 点 P 从点 A 出发,在线段 AO 上以每秒 3 个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动。 点 A 关于点 P 的对称点为点 Q,以线段 PQ 为边向上作正方形 PQMN。设运动时间为 x 秒
20、。 (1) 当 3 1 t秒时,点 Q 的坐标是 ; 巩固 (2) 在运动过程中,设正方形 PQMN 与AOB 重叠部分的面积为 S,求 S 与 t 的函数表达式; (3) 若正方形 PQMN 对角线的交点为 T,请直接写出运动过程中 OT+PT 的最小值。 3.如图,在平面直角坐标系中,抛物线 C1: 2 1yaxbx经过点 A(2,1)和点 B(1,1),抛物线 C2: 2 21yxx,动直线 xt 与抛物线 C1交于点 N,与抛物线 C2交于点 M(1)求抛物线 C1的表达 式;(2)直接 用含 t 的代数式表示线段 MN 的长;(3)当AMN 是以 MN 为直角边的等腰直角三角形时,
21、求 t 的值; 1.如图, 已知抛物线4 2 3 2 xaxy的对称轴是直线 x=3, 且与 x 轴相交于 A, B 两点 (B 点在 A 点右侧) , 与 y 轴交于 C 点。 (1)求抛物线的解析式和 A、B 两点的坐标 拔高 (2)若点 P 是抛物线上 B、C 两点之间的一个动点(不与 B、C 重合),则是否存在一点 P,使PBC 的 面积最大,若存在,请求出PBC 的最大面积;若不存在,试说明理由 2.如图,点 P 为抛物线 y= 1 4 x 2上一动点 (1)若抛物线 y= 1 4 x 2是由抛物线 y=1 4 (x+2) 2-1 通过图象平移得到的,请写出平移的过程; (2)若直线
22、 l 经过 y 轴上一点 N,且平行于 x 轴,点 N 的坐标为(0,-1),过点 P 作 PMl 于 M 问题探究:如图一,在对称轴上是否存在一定点 F,使得 PM=PF 恒成立?若存在,求出点 F 的坐标:若 不存在,请说明理由 问题解决:如图二,若点 Q 的坐标为(1,5),求 QP+PF 的最小值 3.如图,抛物线4 2 bxaxy经过 A(3,6),B(5,4)两点,与 y 轴交于点 C,连接 AB,AC, BC (1)求抛物线的表达式; (2)求证:AB 平分CAO; (3)抛物线的对称轴上是否存在点 M,使得ABM是以 AB 为直角边的直角三角形若存在,求出点 M 的坐标;若不存在,说明理由