1、 20202020- -20212021 学年度华师大附中实验学校(粤东)九年级数学第一次月考试卷学年度华师大附中实验学校(粤东)九年级数学第一次月考试卷 一、选择题(共一、选择题(共 1010 题;共题;共 3030 分)分) 1.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ) A. B. C. D. 2.某班从甲、 乙、 丙、 丁四位选中随机选取两人参加校乒乓球比赛, 恰好选中甲、 乙两位选手的概率是 ( ) A. B. C. D. 3.若菱形 ABCD 的一条对角线长为 8,边 CD 的长是方程 x210 x+240 的一个根,则该菱形 ABCD 的周长为
2、( ) A. 16 B. 24 C. 16 或 24 D. 48 4.某小区中央花园有一块长方形花圃,它的宽为 5m,若长边不变,将短边扩大,使得扩大后的花圃形状 为正方形,且面积比原来增加 15m,设原来花圃长边为 xm,可列方程( ) A. x+5x=15 B. x2-5x=15 C. (x-5)2=15 D. x2-25=15 5.如图,菱形 的对角线 、 相交于点 O,过点 D 作 于点 H,连接 ,若 , 菱形 ,则 的长为( ) A. 4 B. 5 C. D. 6 6.如图长方形纸片 ABCD,在 AD 边上取一点 E,沿 BE 折叠,使点 C、D 分别落在点 C1、D1处,且点
3、A 刚好落在 C1D1上,若ABC1=45,则BED=( ) A. 112.5 B. 135 C. 125 D. 100.5 7.如图, 正方形 的边长为 4, 点 E 在 上且 , F 为对角线 上一动点, 则 周 长的最小值为( ). A. 5 B. 6 C. 7 D. 8 8.x1 , x2是关于 x 的一元二次方程 x2-2mx-3m=0 的两根,则下列说法不正确的是( ) A. x1+x2=2m B. x1x2=-3m2 C. x1-x2=4m D. =-3 9.如图,有一长方形鸡场,鸡场的一边靠墙(墙长 18 米),另三边用竹篱笆围成,竹篱笆的总长为 35 米,与墙平行的边留有 1
4、 米宽的门(门用其它材料做成),若鸡场的面积为 160 平方米,则鸡场与墙 垂直的边长为( ) A. 7.5 米 B. 8 米 C. 10 米 D. 10 米或 8 米 10.在菱形 ABCD 中,ADC=60,点 E 为 AB 边的中点,DE 是线段 AP 的垂直平分线,连接 DP、 BP、CP,下列结论:DP=CD;AP2+BP2=CD2;DCP=75;CPA=150,其中正确的是 ( ) A. B. C. D. 二、填空题(共二、填空题(共 7 7 题;共题;共 2828 分)分) 11.如图,在矩形 中, 分别以点 为圆心, 以大于 的长为半径画弧, 两弧相交于点 和 作直线 分别与
5、交于点 ,则 _ 12.关于 的方程 有两个实数根,则 的取值范围是_. 13.若 x1 , x2是方程 x24x20200 的两个实数根,则代数式 x122x1+2x2的值等于_. 14.盒子里有 3 张形状、大小、质地完全相同的卡片,上面分别标着数字 1,2,3,从中随机抽出 1 张后 不放回,再随机抽出 1 张,则两次抽出的卡片上的数字之和为奇数的概率是_. 15.经过人民路十字路口红绿灯处的两辆汽车,可能直行,也可能左转,如果这两种可能性大小相同,则 至少有一辆向左转的概率是_. 16.如图,在菱形 ABCD 中,AB6,B60,点 E 在边 AD 上,且 AE2.若直线 l 经过点
6、E,将 该菱形的面积平分,并与菱形的另一边交于点 F,则线段 EF 的长为_. 17.如图,正方形 ABCD 中,点 E 是 AD 边的中点,BD、CE 交于点 H,BE、AH 交于点 G,则下列结 论: AGBE; BEBC= 2; SBHE=SCHD; AHB=EHD.其中正确的序号是_. 三、解答题一(共三、解答题一(共 3 3 题;共题;共 1818 分)分) 18.如图,正方形 ABCD 的边 CD 在正方形 ECGF 的边 CE 上,连接 DG,过点 A 作 AHDG,交 BG 于点 H连接 HF,AF,其中 AF 交 EC 于点 M 求证:AHF 为等腰直角三角形 19.“中国结
7、”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中 国结”图案的不透明卡片 A,B,C,卡片除正面图案不同外,其余均相同将三张卡片正面向下洗匀, 小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片请用画树 状图或列表的方法,求小吉同学抽出的两张卡片中含有 A 卡片的概率 20.某商店在今年 2 月底以每袋 23 元的成本价收购一批农产品准备向外销售,当此农产品售价为每袋 36 元时,3 月份销售 125 袋,4、5 月份该农产品十分畅销,销售量持续走高在售价不变的基础上,5 月 份的销售量达到 180 袋设 4、5 这两个月销售量的
8、月平均增长率不变 (1)求 4、5 这两个月销售量的月平均增长率; (2)6 月份起,该商店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价 1 元袋,销量就增 加 4 袋,当农产品每袋降价多少元时,该商店 6 月份获利 1920 元? 四解答题二(共 3 题,共 24 分) 21.中华文化源远流长,文学方面,西游记、三国演义、水浒传、红楼梦是我国古代长 篇小说中的典型代表,被称为“四大古典名著”某中学为了了解学生对四大古典名著的阅读情况,就“四 大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统 计图 请根据以上信息,解决下列问题: (1)本次
9、调查所得数据的众数是_部,中位数是_部; (2)扇形统计图中“4 部”所在扇形的圆心角为_度; (3)请将条形统计图补充完整; (4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法 求他们恰好选中同一名著的概率 22.已知关于 x 的方程 . (1)若该方程有两个不相等的实数根,求实数 a 的取值范围; (2)若该方程的一个根为 1,求 a 的值及该方程的另一根. 23.如图,正方形 ABCD 的边长为 4,E 是边 BC 上的一点,把 平移到 ,再把 逆 时针旋转到 的位置. (1)把 平移到 ,则平移的距离为_; (2)四边形 AEFD 是_四边形;
10、 (3)把 逆时针旋转到 的位置,旋转中心是_点; (4)若连接 EG,求证: 是等腰直角三角形. 五解答题三(共 2 题,共 10 分) 24.如图 1,将一张矩形纸片 ABCD 沿着对角线 BD 向上折叠,顶点 C 落到点 E 处,BE 交 AD 于点 F, AB=6cm,AD=8cm. (1)求证:BDF 是等腰三角形; (2)如图 2,过点 D 作 DGBE,交 BC 于点 G,连结 FG 交 BD 于点 O判断四边形 FBGD 的形状, 并说明理由 (3)在(2)的条件下,求 FG 的长. 25.如图,四边形 是菱形,以点 O 为坐标原点, 所在直线为 x 轴建立平面直角坐标系若点
11、A 的坐标为 ,直线 与 y 轴相交于点 D,连接 (1)求菱形 的边长; (2)证明 为直角三角形; (3) 直线 上是否存在一点P使得 的面积与 的面积相等?若存在, 请求出点P的坐标; 若不存在,请说明理由 答案答案 一、选择题 1.解:三个不同的篮子分别用 A、B、C 表示,根据题意画图如下: 共有 9 种等可能的情况数,其中恰有一个篮子为空的有 6 种, 则恰有一个篮子为空的概率为 故答案为:A 2.解:画树状图为: P(选中甲、乙两位)= . 故答案为:C. 3.解:如图所示: 四边形 ABCD 是菱形, ABBCCDAD, x210 x+240, 因式分解得:(x4)(x6)0,
12、 解得:x4 或 x6, 分两种情况: 当 ABAD4 时,4+48,不能构成三角形; 当 ABAD6 时,6+68, 菱形 ABCD 的周长4AB24. 故答案为:B. 4.解: 扩大后的花圃形状为正方形,边为 xm 面积=x2 原长方形花圃,它的宽为 5m, 长边为 xm 面积=5x 扩大后的花圃形面积比原来增加 15m x2-5x=15 故答案为:B 5.解:四边形 ABCD 是菱形, AO=CO=6,BO=DO,S菱形 ABCD= =48, BD=8, DHAB,BO=DO=4, OH= BD=4 故答案为:A 6.解:四边形 ABCD 是矩形 , ADBC,ABC=90, BED+E
13、BC=180, ABC1=45, CBC1=ABC+ ABC1=90+45=135, 由折叠性质得:EBC=EBC1= 135=67.5, BED=180-EBC=180-67.5= 112.5 . 故答案为:A. 7.解:连接 ED,交 AC 于一点 F,连接 BF, 四边形 ABCD 是正方形, 点 B 与点 D 关于 AC 对称, BF=DF, 的周长=BF+EF+BE=DE+BE,此时周长最小, 正方形 的边长为 4, AD=AB=4,DAB=90, 点 在 上且 , AE=3, DE= , 的周长=5+1=6, 故答案为:B. 8.解:x1和 x2为一元二次方程的两个根 x1+x2=
14、2m,x1x2=-3m2 (x1-x2)2=(x1+x2)2-4x1x2=4m2+12m2=16m2 x1-x2=4m, x1+x2=2m x1=3m 或 x1=-m;x2=-m 或 3m =-3 或- 故答案为:D. 9.解:设鸡场的长为 x,因为篱笆总长为 35 米,由图可知宽为: 米, 则根据题意列方程为: , 解得:x116,x220(大于墙长,舍去), 宽为: =10(米), 所以鸡场的长为 16 米,宽为 10 米, 即鸡场与墙垂直的边长为 10 米 故答案为:C 10.解:DE 为线段 AP 的垂直平分线 DA=DP 四边形 ABCD 为菱形 DA=CD DP=CD,即正确; A
15、E=EB,AO=OP OEPB, APB=90,即 AP2+BP2=AB2 , 正确; 若DCP=75,则CDP=30 ADC=60 DP 平分ADC,错误; ADC=60,DA=DP=DC DAP=DPA,DCP=DPC CPA= (360-60)=150,即正确 故答案为:B. 二、填空题 11.如图,连接 DN, 在矩形 ABCD 中,AD=4,AB=8, BD= , 根据作图过程可知: MN 是 BD 的垂直平分线, DN=BN,OB=OD=2 , AN=AB-BN=AB-DN=8-DN, 在 RtADN 中,根据勾股定理,得 DN2=AN2+AD2 , DN2=(8-DN)2+42
16、, 解得 DN=5, 在 RtDON 中,根据勾股定理,得 ON= , CDAB, MDO=NBO, DMO=BNO, OD=OB, DMOBNO(AAS), OM=ON= , MN=2 故答案为:2 12.解:由题意得:这个方程是一元二次方程 解得 又 关于 的方程 有两个实数根 此方程的根的判别式 解得 综上,m 的取值范围是 且 故答案为: 且 . 13 解:x1 , x2是方程 x24x20200 的两个实数根, x1+x24,x124x120200,即 x124x12020, 则原式x124x1+2x1+2x2 x124x1+2(x1+x2) 2020+24 2020+8 2028,
17、 故答案为:2028. 14.解:列表如下 1 2 3 1 3 4 2 3 5 3 4 5 由表可知,共有 6 种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有 4 种结果, 所以两次抽出的卡片上的数字之和为奇数的概率为 , 故答案为: . 15.解:由题意画出“树状图”如下: 这两辆汽车行驶方向共有 4 种可能的结果,其中至少有一辆向左转有 3 种情况, 至少有一辆向左转的概率是 . 故答案为: . 16.解:如图,过点 A 和点 E 作 AGBC,EHBC 于点 G 和 H, 得矩形 AGHE, GHAE2, 在菱形 ABCD 中,AB6,B60, BG3,AG3 EH, HCBCB
18、GGH6321, EF 平分菱形面积, FCAE2, FHFCHC211, 在 RtEFH 中,根据勾股定理,得 EF 2 . 故答案为:2 . 17.证明:四边形 ABCD 是正方形,E 是 AD 边上的中点, AEDE,ABCD,BADCDA90, 在BAE 和CDE 中 , BAECDE(SAS), ABEDCE, 四边形 ABCD 是正方形, ADDC,ADBCDB45, 在ADH 和CDH 中 , ADHCDH(SAS), HADHCD, ABEDCE, ABEHAD, BADBAHDAH90, ABEBAH90, AGB1809090, AGBE,故正确; 设 ABBC2x,则 A
19、Ex, BE = x, BE:BC :2,故正确; ADBC, SBDESCDE , SBDESDEHSCDESDEH , 即:SBHESCHD , 故正确; ADHCDH, AHDCHD, AHBCHB, BHCDHE, AHBEHD,故正确; 故答案为:. 三、解答题 18. 证明:四边形 ABCD,四边形 ECGF 都是正方形 DABC,ADCD,FGCG,BCGF90 ADBC,AHDG 四边形 AHGD 是平行四边形 AHDG,ADHGCD CDHG,ECGCGF90,FGCG DCGHGF(SAS) DGHF,HFGHGD AHHF, HGD+DGF90 HFG+DGF90 DGH
20、F,且 AHDG AHHF,且 AHHF AHF 为等腰直角三角形 19. 解:解法一:画树状图,根据题意,画树状图结果如下: 由树状图可以看出,所有等可能出现的概率一共有 9 种,而两张卡片中含有 A 卡片的结果有 5 种,所以 P (小吉抽到两张卡片中有 A 卡片)= 解法二:用列表法,根据题意,列表结果如下: 结果为:(第一次抽取情况,第二次抽取情况) 由表可以看出,所有等可能出现的概率一共有 9 种,而两张卡片中含有 A 卡片的结果有 5 种,所以 P(小 吉抽到两张卡片中有 A 卡片)= 20.(1)解:设 4、5 这两个月销售量的月平均增长率为 x, 依题意,得:125(1+x)2
21、=180, 解得:x1=0.2=20%,x2=-2.2(不合题意,舍去) 答:4、5 两个月销售量的平均增长率为 20% (2)解:设每袋降价 y 元,则 6 月份的销售量为(180+4y)袋, 依题意,得:(36-y-23)(180+4y)=1920, 解得:y1=3,y2=-35(不合题意,舍去) 答:当农产品每袋降价 3 元时,该商店 6 月份获利 1920 元 21.(1)1;2 (2) (3)解:2 部对应的人数为:40-2-14-10-8=6 人 补全统计图如图所示 (4)解:将西游记、三国演义、水浒传、红楼梦分别记作 A,B,C,D, 画树状图可得: 由图可知,共有 16 种等可
22、能的结果,其中选中同一名著的有 4 种, 选中同一部 故答案为: 解:(1)调查的总人数为:1025%=40, 2 部对应的人数为 40-2-14-10-8=6, 本次调查所得数据的众数是 1 部, 2+14+10=2621,2+1420, 中位数为 2 部 故答案为:1,2;(2)扇形统计图中“4 部”所在扇形的圆心角为: 故答案为:72. 22. (1)解:b24ac=2241(a2)=124a0, 解得:a3, a 的取值范围是 a3; (2)解:设方程的另一根为 x1 , 由根与系数的关系得: ,解得: , 则 a 的值是1,该方程的另一根为3. 23.(1)4 (2)平行 (3)A
23、(4)证明:由旋转的性质得: 是等腰三角形 ,即 ,即 是等腰直角三角形 解:(1) 四边形 ABCD 是边长为 4 的正方形 由平移的性质可知,平移的距离为 故答案为:4; ( 2 )由平移的性质可知,平移距离为 ,且点 在一条直线上 又 四边形 AEFD 是平行四边形 故答案为:平行; ( 3 )由旋转的定义得:把 逆时针旋转到 的位置,旋转中心是 A 点 故答案为:A; 24. (1)解:根据折叠,DBC=DBE,又 ADBC, DBC=ADB,DBE=ADB, DF=BF,BDF 是等腰三角形 (2)解:四边形 ABCD 是矩形ADBC FDBG 又DGBE 四边形 BFDG 是平行四
24、边形 DF=BF 四边形 BFDG 是菱形 (3)解:设 DF 为 xcm,则 BF=xcm,AF(8-x)cm 在 RtABE 中,由勾股定理得,62+(8-x)2x2 , 解得 x= , 四边形 ABCD 是矩形, A=90,BD= =10, 四边形 BGDF 是菱形, BDFG, 10FG , FG ,FG 的长为 . 25. (1)解:过点 A 作 轴于点 M, , , (2)解: 为菱形, , 又 , 又 , 设直线 AC 的解析式为 y=kx+b(k0) 把 A,C 代入得 , 解得 , , 令 x=0,y= , 点 设直线 BC 的解析式为 y=px+q(p0) 把 B,C 代入得 , 解得 , , 设直线 BD 的解析式为 y=mx+n(m0) 把 B,D 代入得 , 解得 , , , 所以 为直角三角形; (3)解:延长 交 于点 P, , , 设直线 AO 的解析式为 y=cx(c0), 把 A 代入得 12=-5c, 解得 c= , , 由(2)知 联立得: , 解得 , 所以点 , 作 P 关于点 B 的对称点 P, 设 P(x,y), 可根据中点得: , 解得 , , 综上点 P 为 或