北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》课件

上传人:狮*** 文档编号:136781 上传时间:2020-05-03 格式:PPTX 页数:26 大小:1.61MB
下载 相关 举报
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》课件_第1页
第1页 / 共26页
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》课件_第2页
第2页 / 共26页
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》课件_第3页
第3页 / 共26页
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》课件_第4页
第4页 / 共26页
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》课件_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、1.2 直角三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第1课时 直角三角形的性质与判定,北师大版八年级下册数学教学课件,1.复习直角三角形的相关知识,归纳并掌握直角三 角形的性质和判定. 2.学习并掌握勾股定理及其逆定理,能够运用其解 决问题.(重点、难点),学习目标,直角三角形的两个锐角互余.,问题1 直角三角形的定义是什么?,问题2 三角形内角和的性质是什么?,有一个是直角的三角形叫直角三角形.,三角形内角和等于180.,这节课我们一起来证明直角三角形的判定与性质.,导入新课,复习引入,问题3 前面我们探究过直角三角形的哪些性质?,在直角三角形中,如果一个锐角等

2、于30,那么它所对的直角边等于斜边的一半.,在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30.,讲授新课,问题:直角三角形的两锐角互余,为什么?,问题引入,根据三角形的内角和定理,即可得到“直角三角形的两锐角互余”.,如果一个三角形中有两个锐角互余,那么这个三角形是直角三角形吗?,如图,在ABC中, A +B=90,那么ABC是直角三角形吗?,在ABC中,因为 A +B +C=180, 又A +B=90,所以C=90. 于是ABC是直角三角形.,知识回顾,勾股定理:直角三角形两条直角边的平方和等于斜边的平方.即a2+b2=c2.勾股定理在西方文献中又称为毕达哥拉斯

3、定理.,证明欣赏,b,a,c,b,a,c,1美国第二十任总统的证法:,c,a,b,c,a,b,c,a,b,c,a,b, (a+b)2 = c2+ ,,a2+2ab+b2 = c2+2ab,,a2+b2=c2.,大正方形的面积可以表示为 ; 也可以表示为 ;,(a+b)2,c2+,2利用正方形面积拼图证明:,c, c2= +(b-a)2,,c2 =2ab+b2-2ab+a2,,c2 =a2+b2,, a2+b2=c2.,大正方形的面积可以表示为 ; 也可以表示为 ,c2,+(b-a)2,3赵爽弦图,c,a,c,a,c,b,a,a,b,b,b,如果一个三角形两边的平方和等于第三边的平方,那么这个三

4、角形是直角三角形,勾股定理反过来,怎么叙述呢?,这个命题是真命题吗?为什么?,已知:如图,在ABC中,AC2+BC2=AB2. 求证:ABC是直角三角形 分析:构造一个直角三角形与ABC全等,你能自己写出证明过程吗?,例1 证明此命题:,证明:作RtDEF,使E=90, DE=AC,FE=BC, 则DE2+EF2=DF2(勾股定理) AC2+BC2=AB2(已知), DE=AC,FE=BC(作图), AB2=DF2, AB=DF, ABCDFE(SSS) C=E=90, ABC是直角三角形,归纳总结,定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,勾股定理:直角三

5、角形两条直角边的平方和等于斜边的平方,议一议,定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,勾股定理:直角三角形两条直角边的平方和等于斜边的平方,下面两个定理的条件和结论有什么样的关系?,一个命题的条件和结论分别是另一个命题的结论和条件,观察上面三组命题,你发现了什么?,1.两直线平行,内错角相等;,3.如果小明患了肺炎,那么他一定会发烧; 4.如果小明发烧,那么他一定患了肺炎;,2.内错角相等,两直线平行;,5.一个三角形中相等的边所对的角相等; 6.一个三角形中相等的角所对的边相等;,说出下列命题的条件和结论:,在两个命题中,如果第一个命题的条件是第二个命题

6、的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.,如果把其中一个命题叫做原命题,那么另一个命题就叫做它的逆命题.,上面每两个命题的条件和结论恰好互换了位置,命题“两直线平行,内错角相等”的条件和结论为: 条件为:两直线平行; 结论为:内错角相等 因此它的逆命题为:,内错角相等,两直线平行.,归纳总结,例2 指出下列命题的条件和结论,并说出它们的逆命题.,(1)如果一个三角形是直角三角形,那么它的两个锐角互余.,条件:一个三角形是直角三角形.,结论:它的两个锐角互余.,逆命题:如果一个三角形的两个锐角互余,那么这个三角形是直角三角形.,(2)等边三角形的每个角都等于60

7、.,条件:一个三角形是等边三角形;,结论:它的每个角都等于60.,逆命题:如果一个三角形的每个角都等于60,那么这个三角形是等边三角形.,(3)全等三角形的对应角相等.,条件:两个三角形是全等三角形.,结论:它们的对应角相等.,逆命题:如果两个三角形的对应角相等,那么这两个三角形全等.,每一个命题都有逆命题,只要将原命题的条件改成结论,并将结论改成条件,便可得到原命题的逆命题但是原命题正确,它的逆命题未必正确 例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题,知识归纳,例3 举例说明下列命题的逆命题是假命题.,(2)如果两个角都是直角,那么这两个角相等.,逆命题:如果两

8、个角相等,那么这两个角是直角.,例如10能被5整除,但它的个位数是0.,(1)如果一个整数的个位数字是5 ,那么这个整数 能被5整除.,逆命题:如果一个整数能被5整除,那么这个整数的个位数字是5.,例如60= 60,但这两个角不是直角.,如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.,注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.,注意2:不是所有的定理都有逆定理.,知识归纳,当堂练习,1.如图是一张直角三角形的纸片,两直角边AC6 cm,BC8 cm,现将ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为(

9、 ),A.4 cm B.5 cm C.6 cm D.10 cm,【解析】RtABC中,AB2=AC2+BC2=100, AB=10cm.BE= AB=5cm.,B,2.在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明.,(1)同旁内角互补,两直线平行.,逆命题:两直线平行,同旁内角互补.,真,(2)有两个角相等的三角形是等腰三角形.,逆命题:如果一个三角形是等腰三角形,那么它有两个角相等.,真,直角三角形,角的性质,课堂小结,边的性质,勾股定理:直角三角形两条直角边的平方和等于斜边的平方; 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,定理1:直角

10、三角形的两个锐角互余; 定理2:有两个角互余的三角形是直角三角形.,互逆命题与互逆定理,互逆命题,互逆定理,一个定理的逆命题也是定理,这两个定理叫做互逆定理,第一个命题的条件是第二个命题的结论; 第一个命题的结论是第二个命题的条件.,概念,概念,“部编本”语文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差

11、不齐,“部编本”力图起到示范作用。 二、“部编本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。,下课啦!,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 初中 > 初中数学 > 北师大版 > 八年级下册