2019中考数学压轴题全揭秘精品专题11 圆问题(学生版)

上传人:hua****011 文档编号:133656 上传时间:2020-04-14 格式:DOC 页数:12 大小:1.18MB
下载 相关 举报
2019中考数学压轴题全揭秘精品专题11 圆问题(学生版)_第1页
第1页 / 共12页
2019中考数学压轴题全揭秘精品专题11 圆问题(学生版)_第2页
第2页 / 共12页
2019中考数学压轴题全揭秘精品专题11 圆问题(学生版)_第3页
第3页 / 共12页
2019中考数学压轴题全揭秘精品专题11 圆问题(学生版)_第4页
第4页 / 共12页
2019中考数学压轴题全揭秘精品专题11 圆问题(学生版)_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1111 圆问题圆问题 一、单选题一、单选题 1 九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今 仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长 一尺, 问径几何?”译为: “今有一圆柱形木材, 埋在墙壁中, 不知其大小, 用锯去锯这木材, 锯口深 1 寸 (ED=1 寸) ,锯道长 1 尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径 AC 是( ) A13寸 B20 寸 C26寸 D28寸 2AB 是O

2、 的直径,点 C在圆上,ABC=65 ,那么OCA的度数是( ) A25 B35 C15 D20 3如图,正方形 ABCD 内接于O,O 的半径为 2,以点 A 为圆心,以 AC 长为半径画弧交 AB 的延长 线于点 E,交 AD的延长线于点 F,则图中阴影部分的面积为( ) A44 B48 C84 D88 4如图,点 A、B、C、D 在O 上,AOC=140,点 B 是弧 AC 的中点,则D 的度数是( ) 2 A70 B55 C35.5 D35 5如图,在O 中,AE 是直径,半径 OC 垂直于弦 AB 于 D,连接 BE,若 AB=2,CD=1,则 BE 的长是 A5 B6 C7 D8

3、6如图,在ABC中,ACB=90 ,过 B,C两点的O交 AC 于点 D,交 AB 于点 E,连接 EO并延长交O 于点 F.连接 BF,CF.若EDC=135 ,CF=,则 AE2+BE2的值为 ( ) A8 B12 C16 D20 7如图,AB是O的直径,MN是O的切线,切点为 N,如果MNB=52 ,则NOA的度数为 A76 B56 C54 D52 8某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为 1的半圆形量角器中,画一个直径为 1 的圆,把刻度尺 CA 的 0刻度固定在半圆的圆心 O处,刻度尺可以绕点 O旋转从图中所示的图尺可读出 sinAOB的值是 3 A B C D

4、9如图,扇形 OAB 中,AOB=100,OA=12,C 是 OB 的中点,CDOB 交于点 D,以 OC 为半径的交 OA 于点 E,则图中阴影部分的面积是( ) A12+18 B12+36 C6+18 D6+36 10如图,的半径为 2,圆心的坐标为,点 是上的任意一点,且、与 轴 分别交于 、 两点,若点 、点 关于原点 对称,则的最小值为( ) A3 B4 C6 D8 11在ABC中,若 O为 BC 边的中点,则必有:AB2+AC2=2AO2+2BO2成立依据以上结论,解决如下问 题:如图,在矩形 DEFG中,已知 DE=4,EF=3,点 P 在以 DE为直径的半圆上运动,则 PF2+

5、PG2的最小值 为( ) A B C34 D10 4 12如图,ABC 中,A=30 ,点 O 是边 AB 上一点,以点 O 为圆心,以 OB 为半径作圆,O 恰好与 AC 相切于点 D,连接 BD若 BD平分ABC,AD=2,则线段 CD 的长是( ) A2 B C D 二、填空题二、填空题 13如图,在 RtABC 中,ACB=90 ,AC=6,BC=8,点 D是 AB的中点,以 CD为直径作O,O分 别与 AC,BC 交于点 E,F,过点 F作O 的切线 FG,交 AB于点 G,则 FG 的长为_ 14如图,正方形 ABCD的边长为 2a,E为 BC边的中点, 的圆心分别在边 AB、CD

6、上,这两段 圆弧在正方形内交于点 F,则 E、F间的距离为 15 如图, AC 为O 的直径, 点 B在圆上, ODAC交O 于点 D, 连接 BD, BDO=15 , 则ACB=_ 16如图,直线 PA 过半圆的圆心 O,交半圆于 A,B 两点,PC 切半圆与点 C,已知 PC=3,PB=1,则该半圆的 半径为_. 5 17如图,半圆的半径 OC=2,线段 BC 与 CD 是半圆的两条弦,BC=CD,延长 CD 交直径 BA 的延长线于点 E, 若 AE=2,则弦 BD 的长为_ 18如图 1 是小明制作的一副弓箭,点 A,D 分别是弓臂 BAC 与弓弦 BC 的中点,弓弦 BC=60cm沿

7、 AD 方向 拉动弓弦的过程中,假设弓臂 BAC 始终保持圆弧形,弓弦不伸长如图 2,当弓箭从自然状态的点 D 拉到点 D1时,有 AD1=30cm,B1D1C1=120 (1)图 2 中,弓臂两端 B1,C1的距离为_cm (2)如图 3,将弓箭继续拉到点 D2,使弓臂 B2AC2为半圆,则 D1D2的长为_cm 19如图,以 AB 为直径的O 与 CE 相切于点 C,CE 交 AB 的延长线于点 E,直径 AB18,A30, 弦 CDAB,垂足为点 F,连接 AC,OC,则下列结论正确的是_ (写出所有正确结论的序号) ; 扇形 OBC的面积为; OCFOEC; 若点 P 为线段 OA 上

8、一动点,则 APOP有最大值 20.25 6 20如图,已知MON=120,点 A,B 分别在 OM,ON 上,且 OA=OB=a,将射线 OM 绕点 O 逆时针旋转得到 OM,旋转角为 (0120且 60) ,作点 A 关于直线 OM的对称点 C,画直线 BC 交 OM于 点 D,连接 AC,AD,有下列结论: AD=CD; ACD 的大小随着 的变化而变化; 当 =30时,四边形 OADC 为菱形; ACD 面积的最大值为a2; 其中正确的是_ (把你认为正确结论的序号都填上) 21小明发现相机快门打开过程中,光圈大小变化如图 1 所示,于是他绘制了如图 2所示的图形图 2 中留 个形状大

9、小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若 PQ 所在的直线经过点 M, PB=5cm,小正六边形的面积为cm2,则该圆的半径为_cm 22如图,已知正方形 ABCD 的边长是 4,点 E是 AB边上一动点,连接 CE,过点 B作 BGCE于点 G, 点 P 是 AB 边上另一动点,则 PD+PG的最小值为_ 7 23如图,矩形中,以为直径的半圆 与相切于点 ,连接,则阴影部分的 面积为_ (结果保留 24如图,C 为半圆内一点,O 为圆心,直径 AB 长为 2 cm,BOC=60,BCO=90,将BOC 绕圆心 O 逆时针旋转至BOC,点 C在 OA 上,则边 BC 扫过区域

10、(图中阴影部分)的面积为_cm2 三、解答题三、解答题 25如图,过O 外一点 P 作O 的切线 PA 切O 于点 A,连接 PO 并延长,与O 交于 C、D 两点,M 是半 圆 CD 的中点,连接 AM 交 CD 于点 N,连接 AC、CM来源:Zxxk.Com (1)求证:CM 2=MN.MA; (2)若P=30,PC=2,求 CM 的长 26如图,四边形中,以为直径的经过点 ,连接、交于点 (1)证明:; 8 (2)若,证明:与相切; (3)在(2)条件下,连接交于点 ,连接,若,求的长 来源: 27已知四边形 ABCD 是O 的内接四边形,AC是O 的直径,DEAB,垂足为 E (1)

11、延长 DE交O于点 F,延长 DC,FB 交于点 P,如图 1求证:PC=PB; (2) 过点 B作 BGAD, 垂足为 G, BG交 DE 于点 H, 且点 O和点 A都在 DE的左侧, 如图 2 若 AB= , DH=1,OHD=80 ,求BDE 的大小 28如图,ABC 内接于O,BD 为O 的直径,BD 与 AC 相交于点 H,AC 的延长线与过点 B 的直线相交于 点 E,且A=EBC 9 (1)求证:BE 是O 的切线; (2)已知 CGEB,且 CG 与 BD、BA 分别相交于点 F、G,若 BGBA=48,FG=,DF=2BF,求 AH 的值 29如图,AB为的直径,C为上一点

12、,D 为 BA 延长线上一点, 求证:DC为的切线; 线段 DF分别交 AC,BC于点 E,F且,的半径为 5,求 CF的长 30如图,在 RtABC 中,AD 平分BAC,交 BC 于点 D,点 O 在 AB 上,O 经过 A、D 两 点,交 AC于点 E,交 AB于点F (1)求证:BC是O的切线; (2)若O的半径是 2cm,E是弧 AD的中点,求阴影部分的面积(结果保留 和根号) 10 来源:Z。X。X。K 31如图,AB为O的直径,且 AB=4,点 C 在半圆上,OCAB,垂足为点 O,P 为半圆上任意一点,过 P 点作 PEOC于点 E,设OPE的内心为 M,连接 OM、PM (1

13、)求OMP 的度数;来源:Zxxk.Com (2)当点 P 在半圆上从点 B 运动到点 A时,求内心 M所经过的路径长 32如图,四边形 ABCD中,AB=AD=CD,以 AB为直径的O经过点 C,连接 AC,OD交于点 E (1)证明:ODBC; (2)若 tanABC=2,证明:DA与O相切; (3)在(2)条件下,连接 BD 交于O于点 F,连接 EF,若 BC=1,求 EF的长 11 33如图,AB 是O的直径,点 E为线段 OB 上一点(不与 O,B重合) ,作 ECOB,交O于点 C,作 直径 CD,过点 C的切线交 DB的延长线于点 P,作 AFPC 于点 F,连接 CB (1)

14、求证:AC 平分FAB; (2)求证:BC2=CECP; (3)当 AB=4且= 时,求劣弧的长度 34已知O的直径 AB=2,弦 AC与弦 BD交于点 E且 ODAC,垂足为点 F (1)如图 1,如果 AC=BD,求弦 AC的长; (2)如图 2,如果 E为弦 BD 的中点,求ABD的余切值; (3)联结 BC、CD、DA,如果 BC 是O的内接正 n边形的一边,CD是O的内接正(n+4)边形的一边, 求ACD 的面积 35已知:O 是正方形 ABCD 的外接圆,点 E 在上,连接 BE、DE,点 F 在上连接 BF、DF,BF 与 DE、DA分别交于点 G、点 H,且 DA平分EDF来源

15、:Z_xx_k.Com (1)如图 1,求证:CBE=DHG; (2) 如图 2, 在线段 AH 上取一点 N (点 N不与点 A、 点 H 重合) , 连接 BN交 DE于点 L, 过点 H作 HKBN 12 交 DE于点 K,过点 E作 EPBN,垂足为点 P,当 BP=HF时,求证:BE=HK; (3) 如图 3, 在 (2) 的条件下, 当 3HF=2DF时, 延长 EP 交O于点 R, 连接 BR, 若BER 的面积与DHK 的面积的差为 ,求线段 BR的长 36如图 1,平行四边形 ABCD 中,ABAC,AB=6,AD=10,点 P 在边 AD上运动,以 P 为圆心,PA为 半径的P 与对角线 AC 交于 A,E 两点 (1)如图 2,当P 与边 CD 相切于点 F时,求 AP的长; (2)不难发现,当P 与边 CD 相切时,P 与平行四边形 ABCD 的边有三个公共点,随着 AP 的变化,P 与平行四边形 ABCD的边的公共点的个数也在变化,若公共点的个数为 4,直接写出相对应的 AP 的值的取 值范围

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 压轴专题