山东省济宁市2020年中考数学模拟试卷(含答案)

上传人:可** 文档编号:126212 上传时间:2020-03-12 格式:DOCX 页数:16 大小:311.21KB
下载 相关 举报
山东省济宁市2020年中考数学模拟试卷(含答案)_第1页
第1页 / 共16页
山东省济宁市2020年中考数学模拟试卷(含答案)_第2页
第2页 / 共16页
山东省济宁市2020年中考数学模拟试卷(含答案)_第3页
第3页 / 共16页
山东省济宁市2020年中考数学模拟试卷(含答案)_第4页
第4页 / 共16页
山东省济宁市2020年中考数学模拟试卷(含答案)_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、山东省济宁市2020年中考数学模拟试卷一选择题(每题3分,满分30分)1下列实数中,最小的是()A0B7C2D42俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A3.9108B3.9108C0.39107D391093若3a2+mb3和(n2)a4b3是同类项,且它们的和为0,则mn的值是()A2B1C2D14下列图形中,中心对称图形有()A1个B2个C3个D4个5在代数式和中,x均可以取的值为()A9B3C0D26下列运算正确的是()Aa2+a3a2B(a3)2a

2、6C(ab)2a2b2D(2a3)24a67根据学校合唱比赛的活动细则,每个参赛的合唱团在比赛时须演唱4首歌曲,九(2)班合唱团已确定了2首歌曲,还需在A,B两首歌曲中确定一首,在C、D、E三首歌曲中确定另一首,则确定的参赛歌曲中有一首是D的概率是()ABCD8如图是拦水坝的横断面,堤高BC为6米,斜面坡度为1:2,则斜坡AB的长为()A米B米C米D24米9如图,在ABC中,ACB90,ACBC2,将ABC绕AC的中点D逆时针旋转90得到ABC,其中点B的运动路径为,则图中阴影部分的面积为()AB2CD10如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿ADC的路径向点

3、C运动,同时点Q从点B出发以每秒2个单位长度的速度沿BCDA的路径向点A运动,当Q到达终点时,P停止移动,设PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是()ABCD二填空题(满分15分,每小题3分)11分解因式:3x26x2y+3xy2 12如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线yx+1上,则m的值为 13我校八年一班甲、乙两名同学10次投篮命中的平均数均为7,方差1.45,2.3,教练想从中选一名成绩较稳定的同学加入校篮球队,那么应选 14如图,在ABCD中按以下步骤作图:以点B为圆心,BA长为半径作弧,交BC于点E;分别

4、以A,E为圆心,大于AE的长为半径作弧两弧交于点F;连接BF,延长线交AD于点G若AGB30,则C 15如图,正六边形ABCDEF内接于O,若ADE的面积是4,则正六边形ABCDEF的面积是 三解答题16(6分)已知关于x的分式方程,回答下列问题:(1)原方程去分母后,整理成关于x的整式方程得: ;(2)若原分式方程无解,求a的值17(7分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有 名,D类男生有

5、名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是 ;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,18(7分)某校计划一次性购买排球和篮球,每个篮球的价格比排球贵30元;购买2个排球和3个篮球共需340元(1)求每个排球和篮球的价格:(2)若该校一次性购买排球和篮球共60个,总费用不超过3800元,且购买排球的个数少于39个设排球的个数为m,总费用为y元求y关于m的函数关系式,并求m可取的所有值;在学校按怎样的方案购买时,费用最低?最低费用为

6、多少?19(8分)如图,AB是O的直径,点C在O上,过点C的直线与AB延长线相交于点P若COB2PCB,求证:PC是O的切线20(8分)如图,长方形ABCD中ADBC,边AB4,BC8将此长方形沿EF折叠,使点D与点B重合,点C落在点G处(1)试判断BEF的形状,并说明理由;(2)求BEF的面积21(8分)阅读理解:对于任意正实数a,b,0,a+b0,a+b2,只有点ab时,等号成立结论:在a+b2(a,b均为正实数)中,若ab为定值p,则a+b,只有当ab时,a+b有最小值2根据上述内容,回答下列问题:(1)若m0,只有当m 时,m+有最小值 ;(2)思考验证:如图1,AB为半圆O的直径,C

7、为半圆上任意一点,(与点A,B不重合)过点C作CDAB,垂足为D,ADa,DBb试根据图形验证a+b,并指出等号成立时的条件;探索应用:如图2,已知A(3,0),B(0,4)P为双曲线上的任意一点,过点P作PCx轴于点C,PDy轴于点D求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状22(11分)若二次函数yax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,2),且过点C(2,2)(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且SPBA4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使ABOABM?若存在,求出点M到y轴的距离;若不存在,

8、请说明理由参考答案一选择题1解:7204,即最小的数是7,故选:B2解:0.0000000393.9108故选:A3解:由3a2+mb3和(n2)a4b3是同类项,得2+m4,解得m2由它们的和为0,得3a4b3+(n2)a4b3(n2+3)a4b30,解得n1mn2,故选:A4解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形故共2个中心对称图形故选:B5解:由题意知,x30且x30,解得:x3,故选:A6解:Aa2与a3不是同类项,不能合并,此选项错误;B(a3)2a6,此选项正确;C(ab)2a22ab+b2,此选项错误;D(2

9、a3)24a6,此选项错误;故选:B7解:画树状图为:共有6种等可能的结果数,其中确定的参赛歌曲中有一首是D的结果数为2,所以确定的参赛歌曲中有一首是D的概率故选:B8解:斜面坡度为1:2,BC6m,AC12m,则AB(m)故选:B9解:ABC绕AC的中点D逆时针旋转90得到ABC,此时点A在斜边AB上,CAAB,DB,AB2,S阴122(2)2故选:A10解:当0t1时,S2(22t)22t,该图象y随x的增大而减小,当1t2时,S(2t)(2t2)t2+3t2,该图象开口向下,当2t3,S(4t)(2t4)t2+6t8,该图象开口向下,故选:C二填空11解:原式3x(x2xy+y2),故答

10、案为:3x(x2xy+y2)12解:点A关于x轴的对称点B的坐标为:(2,m),将点B的坐标代入直线表达式得:m2+1,解得:m1,故答案为113解:1.45,2.3,甲同学成绩稳定,故答案为:甲14解:由题意:GBAGBE,ADBC,AGBGBE30,ABC60,ABCD,C180ABC120,故答案为12015解:六边形ABCDEF是正六边形,DEFBAFF120,DAF60,DEAFEF,AEFEAF30,DAEEAF30,AED90,AD为直径,DEADODOE,ODE是等边三角形,ADE的面积是4,ODE的面积ADE的面积2,正六边形ABCDEF的面积6ODE的面积6212;故答案为

11、:12三解答16解:(1),x(xa)3(x1)x2x+a(a+2)x3a(2)当a+20时,此时a2,该方程无解;当a+20时,此时将x代入x(x1)0,(1)0,或1,a3或a;综上所述,a2或3或故答案为:(a+2)x3a17解:(1)C类学生人数:2025%5(名)C类女生人数:523(名),D类学生占的百分比:115%50%25%10%,D类学生人数:2010%2(名),D类男生人数:211(名),故C类女生有3名,D类男生有1名;补充条形统计图,故答案为:3,1;(2)360(150%25%15%)36,答:扇形统计图中“课前预习不达标”对应的圆心角度数是36;故答案为:36;(3

12、)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种所以P(所选两位同学恰好是一位男同学和一位女同学)18解:(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是50元,每个篮球的价格是80元;(2)y50m+80(60m)30m+4800,由题意可得:,解得:,m取整数,所以m34,35,36,37,38;k300,y随m的增大而减小,当m38时,y最小3660元19证明:连接AC,OAOC,AACOCOB2ACO又COB2PCB,ACOPCBAB是O的直径

13、,ACO+OCB90PCB+OCB90,即OCCPOC是O的半径,PC是O的切线20解:(1)BEF是等腰三角形EDFC,DEFBFE,根据翻折不变性得到DEFBEF,故BEFBFEBEBFBEF是等腰三角形;(2)矩形ABCD沿EF折叠点B与点D重合,BEDE,BGCD,EBGADC90,GC90,ABCD,ABBG,设BEDEx,则AEABDE8x,在RtABE中,AB2+AE2BE2,即42+(8x)2x2,解得x5,BE5,ABE+EBFABC90,GBF+EBFEBG90,ABEGBF,在ABE和MBF中,ABEGBF(ASA),BFBE5,EBF的面积541021解:(1)关键题意

14、得m1(填不扣分),最小值为2;(2)AB是O的直径,ACBC,又CDAB,CADBCD90B,RtCADRtBCD,CD2ADDB,CD,若点D与O不重合,连OC,在RtOCD中,OCCD,若点D与O重合时,OCCD,综上所述,即a+b2,当CD等于半径时,等号成立;探索应用:设P(x,),则C(x,0),D(0,),CAx+3,DB+4,S四边形ABCDCADB(x+3)(+4),化简得:S2(x+)+12,x0,0,x+26,只有当x,即x3时,等号成立S26+1224,S四边形ABCD有最小值24,此时,P(3,4),C(3,0),D(0,4),ABBCCDDA5,四边形ABCD是菱形

15、22解:(1)二次函数的图象经过点A(3,0)、B(0,2)、C(2,2) 解得:二次函数表达式为yx2x2(2)如图1,记直线BP交x轴于点N,过点P作PDx轴于点D设P(t, t2t2)(t3)ODt,PDt2t2设直线BP解析式为ykx2把点P代入得:kt2t2t2kt直线BP:y(t)x2当y0时,( t)x20,解得:xN(,0)t3t21,即点N一定在点A左侧AN3SPBASABN+SANPANOB+ANPDAN(OB+PD)44解得:t14,t21(舍去)t2t2点P的坐标为(4,)(3)在抛物线上(AB下方)存在点M,使ABOABM如图2,作点O关于直线AB的对称点E,连接OE交AB于点G,连接BE交抛物线于点M,过点E作EFy轴于点FAB垂直平分OEBEOB,OGGEABOABMA(3,0)、B(0,2),AOB90OA3,OB2,ABsinOAB,cosOABSAOBOAOBABOGOGOE2OGOAB+AOGAOG+BOG90OABBOGRtOEF中,sinBOG,cosBOGEFOE,OFOEE(,)设直线BE解析式为yex2把点E代入得: e2,解得:e直线BE:yx2当x2x2x2,解得:x10(舍去),x2点M横坐标为,即点M到y轴的距离为

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 第一次模拟