五年级奥数第06讲-分类数图形(教)

上传人:hua****011 文档编号:125434 上传时间:2020-03-08 格式:DOCX 页数:16 大小:164.12KB
下载 相关 举报
五年级奥数第06讲-分类数图形(教)_第1页
第1页 / 共16页
五年级奥数第06讲-分类数图形(教)_第2页
第2页 / 共16页
五年级奥数第06讲-分类数图形(教)_第3页
第3页 / 共16页
五年级奥数第06讲-分类数图形(教)_第4页
第4页 / 共16页
五年级奥数第06讲-分类数图形(教)_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、获取更多培训机构专属优质教育资源,请加微信:weiliuxiao01学科教师辅导讲义学员编号:年级:五年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第06讲分类数图形授课类型T同步课堂P实战演练S归纳总结教学目标认识了解线段、角、三角形、长方形等基本图形;学会数基本图形的个数;掌握数图形的规律。授课日期及时段T(Textbook-Based)同步课堂知识梳理一、学会数图形同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。要正确数出图形的个数,关键是要从基本图形入手。首先要弄清图形中包含的基本

2、图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。二、解题策略要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。2.要按一定的顺序数,做到不重复,不遗漏。典例分析考点一:基本图形例1、数出下图中有多少条线段?【解析】方法一:我们可以采用以线段左端点分类数的方法。以A点为左端点的线段有:AB、AC、AD 3条

3、;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。所以,图中共有线段3+2+1=6(条)。方法二:把图中线段 AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。所以,图中一共有3+2+1=6(条)线段。例2、数出图中有几个角?【解析】数角的个数可以采用与数线段相同的方法来数。方法一:以OA为一边的角有:AOB、AOC、AOD 3个;以OB为一边的角还有:BOC、BOD 2个;以OC为一边的角还有:COD 1个。所以,图中共有角3+2+1=

4、6(个)。方法二:把图中AOB、BOC、COD看做基本角来数,那么,由1个基本角构成的角有:AOB、BOC、COD 3个;由2个基本角构成的角有: AOC、BOD 2个;由3个基本角构成的角有:AOD 1个。所以,图中一共有3+2+1=6(个)角。例3、数出右图中共有多少个三角形?【解析】方法一:我们可以采用按边分类数的方法。以PA为边的三角形有:PAB、PAC、PAD、3个;以PB为边的三角形还有:PBC、PBD 2个;以PC为边的三角形还有:PCD 1个。所以,图中共有三角形3+2+1=6(个)。方法二:把图中三角形 PAB、PBC、PCD看做基本三角形来数,那么,由1个基本三角形构成的三

5、角形有:PAB、PBC、PCD 3个;由2个基本三角形构成的三角形有: PAC、PBD 2个;由3个基本三角形构成的三角形有:PAD 1个。所以,图中一共有3+2+1=6(个)三角形。方法三:我们发现,要数出图中三角形的个数,只需数出线段 AD中包含几条线段就可以了,即3+2+1=6(个)。所以图中共有6个三角形。例4、数出下图中有多少个长方形?【解析】数图中有多少个长方形和数三角形的方法一样,长方形是由长、宽两对线段围成,线段 CD上有3+2+1=6(条)线段,其中每一条与AC中一条线段对应,分别作为长方形的长和宽,这里共有61=6(个)长方形,而AC上共有2+1=3(条)线段也就有63=1

6、8(个)长方形。它的计算公式为:长方形的总数=长边线段的总数宽边线段的总数:(3+2+1)(2+1)=18(个) 例5、数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)【解析】图中边长为1个长度单位的正方形有33=9个,边长为2个长度单位的正方形有22=4个,边长为3个长度单位的正方形有11=1个。所以图中的正方形总数为:1+4+9=14个。经进一步分析可以发现,由相同的nn个小方格组成的几行几列的正方形其中所含的正方形总数为:1122nn。考点二:较复杂的问题例1、有5个同学,每两个人握手一次,一共要握手多少次?【解析】这道题可以用数线段的方法来解答。根据题意,画出线段图,每一

7、个端点代表一个同学。从图上可以看出,第1个同学要与其余4个同学握手共握手4次;第2个同学还要与其余3个同学握手共握手3次,第3个同学要与其余2个同学握手共握手2次;第4个同学还要与最后1个同学握手共握手1次。所以,一共要握手4+3+2+1=10(次)例2、从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?【解析】这道题是数线段的方法在实际生活中的应用,连同广州、北京在内,这条铁路上共有10个站,共有1+2+3+9=45条线段,因此要准备45种不同的车票。由于这些车站之间的距离各不相等,因此,有多少种不同的车票,就有多少种不同的票价

8、,所以共有45种不同的票价。例3、求下列图中线段长度的总和。(单位:厘米)【解析】要求图中的线段长度总和,可以这样计算:AB+AC+AD+AE+BC+BD+BE+CD+CE+DE=1+(1+4)+(1+4+2)+(1+4+2+3)+4+(4+2)+(4+2+3)+2+(2+3)=352厘米从上面的计算中可以发现这样一个规律,算式中长1厘米的基本线段(我们把不能再划分的线段称为基本线段)出现了4次,长4厘米的线段出现了(32)次,长2厘米的线段出现了(23)次,长3厘米的线段出现了(14)次,所以,各线段长度的总和还可以这样算:14+4(32)+2(23)+3(14)=1(51)+4(52)2+

9、2(53)3+3(54)4=52厘米上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、a2、a(n1)。以上各线段长度的总和为L,那么L= a1(n1)1+ a2(n2)2+ a3(n3)3+ a(n1)1(n1)例4、下图中共有多少个三角形?【解析】为了保证不漏数又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加。(1)图中共有6个小三角形;(2)由两个小三角形组合的三角形有3个;(3)由三个小三角形组合的三角形有4个;(4)由六个小三角形组合的三角形有1个。所以共有6341=14个三角形。例5、数出下图中所有三角形的个数。【解析】和三角形AFG一样形

10、状的三角形有5个;和三角形ABF一样形状的三角形有10个;和三角形ABG一样形状的三角形有5个;和三角形ABE一样形的三角形有5个;和三角形AMD一样形状的三角形有5个,共35个三角形。例6、如下图,平面上有12个点,可任意取其中四个点围成一个正方形,这样的正方形有多少个?【解析】把相邻的两点连接起来可以得到下面图形,从图中可以看出:(1)最小的正方形有6个;(2)由4个小正方形组合而成的正方形有2个;(3)中间还可围成2个正方形。所以共有622=10个。例7、数一数,下图中共有多少个三角形?我们可以分类来数:1、单一的小三角形有16个;2、两个小三角形组合的有10个;3、四个小三角形组合的有

11、8个;4、八个小三角形组合的有2个。所以,图中一共有161082=36个三角形。P(Practice-Oriented)实战演练实战演练 课堂狙击1、数出下图中有多少条线段? 【解析】我们可以采用以线段左端点分类数的方法。以A点为左端点的线段有4条;以B点为左端点的线段有3条;以C点为左端点的线段有2条, 以D点为左端点的线段有1条。所以图中共有线段4+3+2+1=10(条)。2、数出图中有几个角?【解析】以OA为一边的角有2个;以OB为一边的角还有1个;以OC为一边的角还有:COD 1个。所以,图中共有角2+1=3(个)。3、数出图中共有多少个三角形?【解析】我们可以采用按边分类数的方法。以

12、BA为边的三角形有4个;以AC为边的三角形还有3个;以AD为边的三角形还有2个,以AE为边的三角形还有1个。所以,图中共有三角形4+3+2+1=10(个)。4、数出下图中有多少个长方形?【解析】长方形的总数=长边线段的总数宽边线段的总数:(4+3+2+1)(3+2+1)=60(个)5、银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?【解析】第一个班要和其余8个班比赛一次,第二个班又要和剩下7个班比赛一次,依次下去,总数是:8+7+6+5+4+3+2+1=36场。6、从上海到武汉的航运线途中,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?【解析】算上上海、武汉一

13、共有11个码头,一共有10+9+8+7+6+5+4+3+2+1=55条线段,那么算上往返的船票,一共是110种。7、数一数,图中共有多少个三角形。【解析】一共有22+10=32个。8、下图中共有8个点,连接任意四点围成一个长方形,一共能围成多少个长方形?【解析】一共3+2+1=6个。 课后反击1、数出下图中有几个长方形?【解析】一共5+4+3+2+1=15个。2、数出图中有几个角?【解析】一共4+3+2+1=10个。3、数出图中共有多少个三角形?【解析】一共有(4+3+2+1)+(4+3+2+1)=20个。4、数出下图中有多少个长方形?【解析】一共有:4+1+1+1=7个。5、有1,2,3,4

14、,5,6,7,8等8个数字各用一次,能组成多少个不同的两位数?【解析】个位为8,十位可以有7种;个位为7,十位也可以有7种;依次推,最后一共有:56种。6、从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?【解析】一共有8个站,那么一共有:7+6+5+4+3+2+1=28条线段,那么一共有28种票价。7、下面图中共有多少个三角形?【解析】一共有:5+6+2+1=14个。8、下图中共有多少个正方形,多少个三角形?【解析】正方形一共有:4+4+1+1=10个; 三角形一共有:16+16+8+4=44个。9、下图中共有6个点,连接其中的三点围成一个三角形,一共能围成多少个三角形

15、?【解析】一共有5个。直击赛场1、下边三个图中都有一些三角形,在图A中,有个;在图B中,有_个;在图C中,有_个。 (第一届小学“希望杯”全国数学邀请赛 四年级 第1试)【解析】5;8;52、数一数,图中有_个三角形。(第二届小学“希望杯”全国数学邀请赛 四年级 第2试)【解析】一共20个。S(Summary-Embedded)归纳总结重点回顾(1)认识了解线段、角、三角形、长方形等基本图形;(2)学会数基本图形的个数;(3)掌握数图形的规律名师点拨重点和难点突破:要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。2.要按一定的顺序数,做到不重复,不遗漏。学霸经验 本节课我学到了 我需要努力的地方是获取更多培训机构专属优质教育资源,请加微信:weiliuxiao01

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 小学 > 小学数学 > 奥数 > 五年级