1 简单几何体 学案(含答案)

上传人:可** 文档编号:115583 上传时间:2020-01-06 格式:DOCX 页数:10 大小:455.28KB
下载 相关 举报
1 简单几何体 学案(含答案)_第1页
第1页 / 共10页
1 简单几何体 学案(含答案)_第2页
第2页 / 共10页
1 简单几何体 学案(含答案)_第3页
第3页 / 共10页
1 简单几何体 学案(含答案)_第4页
第4页 / 共10页
1 简单几何体 学案(含答案)_第5页
第5页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、1简单几何体学习目标1.理解旋转体与多面体的概念.2.掌握球、圆柱、圆锥、圆台的结构特征.3.掌握棱柱、棱锥、棱台的基本性质知识点一旋转体与多面体旋转体一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体多面体把若干个平面多边形围成的几何体叫作多面体思考构成空间几何体的基本元素是什么?常见的几何体可以分成哪几类?答案构成空间几何体的基本元素是:点、线、面常见几何体可以分为多面体和旋转体知识点二常见的旋转体及概念名称图形及表示定义相关概念球记作:球O球面:以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面球体:球面所围成的几何体叫作

2、球体,简称球球心:半圆的圆心球的半径:连接球心和球面上任意一点的线段.球的直径:连接球面上两点并且过球心的线段圆柱记作:圆柱OO以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆柱高:在旋转轴上这条边的长度.底面:垂直于旋转轴的边旋转而成的圆面.侧面:不垂直于旋转轴的边旋转而成的曲面.母线:不垂直于旋转轴的边,无论转到什么位置都叫作侧面的母线圆锥记作:圆锥OO以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆锥圆台记作:圆台OO以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆台特别提醒:(1

3、)经过旋转体轴的截面称为该几何体的轴截面(2)圆柱的母线互相平行,圆锥的母线相交于圆锥的顶点,圆台的母线延长后相交于一点思考以直角三角形的一条直角边所在的直线为轴旋转180所得的旋转体是圆锥吗?答案不是以直角三角形的一条直角边所在的直线为轴旋转180所得的旋转体是圆锥的一半,不是整个圆锥知识点三常见的多面体及相关概念1棱柱(1)定义要点:两个面互相平行;其余各面都是四边形;每相邻两个四边形的公共边都互相平行(2)相关概念:底面:两个互相平行的面侧面:除底面外的其余各面侧棱:相邻两个侧面的公共边顶点:底面多边形与侧面的公共顶点(3)记法:如三棱柱ABCA1B1C1.(4)分类及特殊棱柱:按底面多

4、边形的边数分,有三棱柱、四棱柱、五棱柱、.直棱柱:侧棱垂直于底面的棱柱正棱柱:底面是正多边形的直棱柱2棱锥(1)定义要点:有一个面是多边形;其余各面是三角形;这些三角形有一个公共顶点(2)相关概念:底面:除去棱锥的侧面余下的那个多边形侧面:除底面外的其余三角形面侧棱:相邻两个侧面的公共边顶点:侧面的公共顶点(3)记法:如三棱锥SABC.(4)分类及特殊棱锥:按底面多边形的边数分,有三棱锥、四棱锥、五棱锥、,正棱锥:底面是正多边形,且各侧面全等的棱锥3棱台(1)定义要点:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分(2)相关概念:上底面:原棱锥的截面下底面:原棱锥的底面侧棱:相邻的侧

5、面的公共边顶点:侧面与底面的公共顶点(3)记法:如三棱台ABCA1B1C1.(4)分类及特殊棱台:按底面多边形的边数分,有三棱台、四棱台、五棱台、,正棱台:由正棱锥截得的棱台思考观察下列多面体,试指明其类别答案(1)五棱柱;(2)四棱锥;(3)三棱台1棱柱的侧面都是平行四边形()2有一个面是多边形,其余各面都是三角形的几何体叫棱锥()3直角三角形绕一边所在直线旋转得到的旋转体是圆锥()4半圆绕其直径所在直线旋转一周形成球()题型一旋转体的概念例1下列说法正确的是_(填序号)以直角梯形的一腰所在直线为旋转轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆;以等腰三角形的底边上的高线所在的

6、直线为旋转轴,其余各边旋转一周形成的曲面所围成的几何体是圆锥;用一个平面去截球,得到的截面是一个圆面考点简单几何体的结构特征题点简单旋转体的结构特征答案解析以直角梯形垂直于底边的腰所在直线为旋转轴旋转一周可得到圆台;它们的底面为圆面;正确反思感悟(1)判断简单旋转体结构特征的方法明确由哪个平面图形旋转而成明确旋转轴是哪条直线(2)简单旋转体的轴截面及其应用简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想跟踪训练1下列说法:圆柱的轴截面是过母线的截面中面积最大的一个;用任意一个平面去截圆锥得到的截面一定是一个

7、圆面;圆台的任意两条母线的延长线,可能相交也可能不相交;球的半径是球心与球面上任意一点的连线段其中正确的个数为()A0 B1 C2 D3考点简单几何体的结构特征题点简单旋转体的结构特征答案C解析错误,截面可能是一个三角形;错误,圆台的任意两条母线的延长线必相交于一点;正确故选C.题型二多面体及其简单应用例2(1)下列关于多面体的说法正确的个数为_所有的面都是平行四边形的几何体为棱柱;棱台的侧面一定不会是平行四边形;底面是正三角形,且侧棱相等的三棱锥是正三棱锥;棱台的各条侧棱延长后一定相交于一点;棱柱的每一个面都不会是三角形考点简单几何体的结构特征题点多面体的结构特征答案3解析中两个四棱柱放在一

8、起,如图所示,能保证每个面都是平行四边形,但并不是棱柱故错;中棱台的侧面一定是梯形,不可能为平行四边形,正确;根据棱锥的概念知,正确;根据棱台的概念知,正确;棱柱的底面可以是三角形,故错正确的个数为3.(2)如图所示,长方体ABCDA1B1C1D1,M,N分别为棱A1B1,C1D1的中点这个长方体是棱柱吗?如果是,是几棱柱?为什么?用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,说明理由考点简单几何体题点简单几何体结构判断解长方体是棱柱,是四棱柱因为它有两个平行的平面ABCD与A1B1C1D1,其余各面都是四边形,并且每相邻两个四边

9、形的公共边互相平行,符合棱柱的定义用平面BCNM把这个长方体分成两部分,其中一部分有两个平行的平面BB1M与CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1MCC1N;另一部分有两个平行的平面ABMA1与DCND1,其余各面都是四边形且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是四棱柱,可用符号表示为四棱柱ABMA1DCND1.引申探究若用一个平面去截本例(2)中的四棱柱,能截出三棱锥吗?解如图,几何体BA1B1C1就是三棱锥反思感悟(1)棱柱的识别方法两个面互相平行其余各面都是四边形每相邻两个四边形的公共

10、边都互相平行(2)棱锥的识别方法有一个面是多边形其余各面都是有一个公共顶点的三角形棱锥仅有一个顶点,它是各侧面的公共顶点对几类特殊棱锥的认识()三棱锥是面数最少的多面体,又称四面体它的每一个面都可以作为底面()各棱都相等的三棱锥称为正四面体()正棱锥有以下性质:侧面是全等的等腰三角形,顶点与底面正多边形中心的连线与底面垂直(3)棱台的识别方法上、下底面互相平行各侧棱延长交于一点跟踪训练2下列说法正确的是()A有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台B两底面平行,并且各侧棱也互相平行的几何体是棱柱C棱锥的侧面可以是四边形D棱柱中两个互相平行的平面一定是棱柱的底面考点简单几何体题点简

11、单几何体结构应用答案B解析A中所有侧棱不一定交于一点,故A不正确;B正确;C中棱锥的侧面一定是三角形,故C不正确;D中棱柱的侧面也可能平行,故D不正确圆柱侧面展开图的应用典例如图所示,有一个底面半径为1,高为2的圆柱体,在A点处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由A点爬到B点,问蚂蚁爬行的最短距离是多少?解把圆柱的侧面沿AB剪开,然后展开成为平面图形矩形,如图所示,连接AB,则AB即为蚂蚁爬行的最短距离AA为底面圆的周长,AA212.又ABAB2,AB2,即蚂蚁爬行的最短距离为2.素养评析(1)求几何体表面上两点间的最小距离的步骤将几何体沿着某棱(母线)剪开后展开,画出其侧面展开图;将所求

12、曲线问题转化为平面上的线段问题;结合已知条件求得结果(2)解决此类问题需要将空间图形转化为平面图形,也就是借助空间形式认识事物的位置关系、形态、变化等,同时,要理解运算对象,探究运算思路,所以本题体现了直观想象与数学运算的数学核心素养.1下列几何体中棱柱有()A5个 B4个 C3个 D2个考点简单几何体题点简单几何体结构判断答案D解析由棱柱的定义知,为棱柱2关于下列几何体,说法正确的是()A图是圆柱 B图和图是圆锥C图和图是圆台 D图是圆台考点简单几何体题点简单几何体结构判断答案D解析由旋转体的结构特征知,D正确3下面有关棱台说法中,正确的是()A上下两个底面平行且是相似四边形的几何体是四棱台

13、B棱台的所有侧面都是梯形C棱台的侧棱长必相等D棱台的上下底面可能不是相似图形考点棱台的结构特征题点棱台的结构特征的应用答案B解析由棱台的结构特征知,B正确4等腰三角形ABC绕底边上的中线AD所在的直线旋转一周所得的几何体是()A圆台 B圆锥C圆柱 D球考点简单旋转体的结构特征题点旋转体的结构特征答案B解析中线ADBC,左右两侧对称,旋转体为圆锥5用长和宽分别为3和的矩形纸板卷成圆柱的侧面,则圆柱的底面半径为_答案或解析当以矩形的长或宽分别做底面时,半径分别为或.1圆柱、圆锥、圆台的关系如图所示2棱柱、棱锥、棱台定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:有两个平面(底面)互相平行;其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行(2)棱锥的定义有以下两个要点,缺一不可:有一个面(底面)是多边形;其余各面(侧面)是有一个公共顶点的三角形(3)用一水平平面截棱锥可得到棱台

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 北师大版 > 必修2