1、第1课时等差、等比数列与数列求和题型一等差数列、等比数列的交汇例1记Sn为等比数列an的前n项和已知S22,S36.(1)求an的通项公式;(2)求Sn,并判断Sn1,Sn,Sn2是否成等差数列解(1)设an的公比为q.由题设可得解得q2,a12.故an的通项公式为an(2)n.(2)由(1)可得Sn(1)n.由于Sn2Sn1(1)n22Sn,故Sn1,Sn,Sn2成等差数列思维升华等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n项和公式求解求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程跟踪训练1(2019桂林模拟)已知公差不为0的等差数列an的前n项和为Sn,S1
2、1,S3,S4成等差数列,且a1,a2,a5成等比数列(1)求数列an的通项公式;(2)若S4,S6,Sn成等比数列,求n及此等比数列的公比解(1)设数列an的公差为d.由题意可知整理得即an2n1.(2)由(1)知an2n1,Snn2,S416,S636,又S4SnS,n281,n9,公比q.题型二数列的求和命题点1分组求和与并项求和例2(2018吉大附中模拟)已知数列an是各项均为正数的等比数列,且a1a22,a3a432.(1)求数列an的通项公式;(2)设bnalog2an,求数列bn的前n项和Tn.解(1)设等比数列an的公比为q(q0),则ana1qn1,且an0,由已知得化简得即
3、又a10,q0,a11,q2,数列an的通项公式为an2n1.(2)由(1)知bnalog2an4n1n1,Tn(14424n1)(0123n1).命题点2错位相减法求和例3(2018大连模拟)已知数列an满足an0,a1,anan12anan1,nN*.(1)求证:是等差数列,并求出数列an的通项公式;(2)若数列bn满足bn,求数列bn的前n项和Tn.解(1)由已知可得,2,是首项为3,公差为2的等差数列,32(n1)2n1,an.(2)由(1)知bn(2n1)2n,Tn32522723(2n1)2n1(2n1)2n,2Tn322523724(2n1)2n(2n1)2n1,两式相减得,Tn
4、622222322n(2n1)2n1.6(2n1)2n12(2n1)2n1,Tn2(2n1)2n1.命题点3裂项相消法求和例4在数列an中,a14,nan1(n1)an2n22n.(1)求证:数列是等差数列;(2)求数列的前n项和Sn.(1)证明nan1(n1)an2n22n的两边同时除以n(n1),得2(nN*),所以数列是首项为4,公差为2的等差数列(2)解由(1),得2n2,所以an2n22n,故,所以Sn.思维升华 (1)一般求数列的通项往往要构造数列,此时可从要证的结论出发,这是很重要的解题信息(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法
5、等跟踪训练2(1)已知数列an的前n项和为Sn,且a1,an1an(nN*)证明:数列是等比数列;求数列an的通项公式与前n项和Sn.证明a1,an1an,当nN*时,0,又,(nN*)为常数,是以为首项,为公比的等比数列解由是以为首项,为公比的等比数列,得n1,annn.Sn12233nn,Sn1223(n1)nnn1,两式相减得Sn23nnn1nn1,Sn2n1nn2(n2)n.综上,annn,Sn2(n2)n.(2)(2018三明质检)已知正项数列an的前n项和为Sn,a11,且(t1)Sna3an2(tR)求数列an的通项公式;若数列bn满足b11,bn1bnan1,求数列的前n项和T
6、n.解因为a11,且(t1)Sna3an2,所以(t1)S1a3a12,所以t5.所以6Sna3an2.()当n2时,有6Sn1a3an12,()()()得6ana3ana3an1,所以(anan1)(anan13)0,因为an0,所以anan13,又因为a11,所以an是首项a11,公差d3的等差数列,所以an3n2(nN*)因为bn1bnan1,b11,所以bnbn1an(n2,nN*),所以当n2时,bn(bnbn1)(bn1bn2)(b2b1)b1anan1a2b1.又b11也适合上式,所以bn(nN*)所以,所以Tn,.1已知等差数列an的前n项和为Sn,且a37,a5a726.(1
7、)求an及Sn;(2)令bn(nN*),求证:数列bn为等差数列(1)解设等差数列an的首项为a1,公差为d,由题意有解得a13,d2,则ana1(n1)d32(n1)2n1,Snn(n2)(2)证明因为bnn2,又bn1bnn3(n2)1,所以数列bn是首项为3,公差为1的等差数列2(2018丰台模拟)在数列an和bn中,a11,an1an2,b13,b27,等比数列cn满足cnbnan.(1)求数列an和cn的通项公式;(2)若b6am,求m的值解(1)因为an1an2,且a11,所以数列an是首项为1,公差为2的等差数列所以an1(n1)22n1,即an2n1.因为b13,b27,且a1
8、1,a23,所以c1b1a12,c2b2a24.因为数列cn是等比数列,且数列cn的公比q2,所以cnc1qn122n12n,即cn2n.(2)因为bnan2n,an2n1,所以bn2n2n1.所以b62626175.令2m175,得m38.3已知递增的等比数列an满足:a2a3a428,且a32是a2和a4的等差中项(1)求数列an的通项公式;(2)若bnanan,Snb1b2bn,求使Snn2n162成立的正整数n的最小值解(1)由题意,得解得或an是递增数列,a12,q2,数列an的通项公式为an22n12n.(2)bnanan2n2nn2n,Snb1b2bn(12222n2n),则2S
9、n(122223n2n1),得Sn(2222n)n2n12n12n2n1,则Snn2n12n12,解2n1262,得n5,n的最小值为6.4(2018河北省唐山市迁安三中月考)正项等差数列an满足a14,且a2,a42,2a78成等比数列,an的前n项和为Sn.(1)求数列an的通项公式;(2)令bn,求数列bn的前n项和Tn.解(1)设数列an的公差为d(d0),由已知得a2(2a78)(a42)2,化简得,d24d120,解得d2或d6(舍),所以ana1(n1)d2n2.(2)因为Snn23n,所以bn,所以Tnb1b2b3bn.5(2018济南模拟)已知数列an的前n项和为Sn,a11
10、,an0,SaSn1,其中为常数(1)证明:Sn12Sn;(2)是否存在实数,使得数列an为等比数列,若存在,求出;若不存在,说明理由(1)证明an1Sn1Sn,SaSn1,S(Sn1Sn)2Sn1,Sn1(Sn12Sn)0,an0,Sn10,Sn12Sn0;Sn12Sn.(2)解存在1,使得数列an为等比数列,理由如下:Sn12Sn,Sn2Sn1(n2),相减得an12an(n2),an从第二项起成等比数列,S22S1,即a2a12a1,a210,得1,an若使an是等比数列,则a1a3a,2(1)(1)2,1(舍)或1,经检验符合题意6设等比数列a1,a2,a3,a4的公比为q,等差数列b
11、1,b2,b3,b4的公差为d,且q1,d0.记ciaibi (i1,2,3,4)(1)求证:数列c1,c2,c3不是等差数列;(2)设a11,q2.若数列c1,c2,c3是等比数列,求b2关于d的函数关系式及其定义域;(3)数列c1,c2,c3,c4能否为等比数列?并说明理由(1)证明假设数列c1,c2,c3是等差数列,则2c2c1c3,即2.因为b1,b2,b3是等差数列,所以2b2b1b3.从而2a2a1a3.又因为a1,a2,a3是等比数列,所以aa1a3.所以a1a2a3,这与q1矛盾,从而假设不成立所以数列c1,c2,c3不是等差数列(2)解因为a11,q2,所以an2n1.因为cc1c3,所以2,即b2d23d,由c22b20,得d23d20,所以d1且d2.又d0,所以b2d23d,定义域为.(3)解设c1,c2,c3,c4成等比数列,其公比为q1,则将2得,a1(q1)2c1(q11)2,将2得,a1q2c1q12,因为a10,q1,由得c10,q11.由得qq1,从而a1c1.代入得b10.再代入,得d0,与d0矛盾所以c1,c2,c3,c4不成等比数列9