1、阶段自测卷(五),第八章 立体几何与空间向量,一、选择题(本大题共12小题,每小题5分,共60分) 1.(2019贵州遵义航天中学月考)下列说法正确的是 A.空间中,两不重合的平面若有公共点,则这些点一定在一条直线上 B.空间中,三角形、四边形都一定是平面图形 C.空间中,正方体、长方体、四面体都是四棱柱 D.用一平面去截棱锥,底面与截面之间的部分所形成的多面体叫棱台,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 空间四边形不是平面图形,故B错; 四面体不是四棱柱,故C错; 平行于底面的平面去截棱锥,底面和截面之间的部分
2、所形成的多面体才叫棱台,故D错; 根据公理2可知A正确,故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,2.(2019湛江调研)设m,n是两条不同的直线,是两个不同的平面,下列命题中正确的是 A.n,m,m mn B.,m,mn n C.mn,m,n D.m,nmn,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 对于A,根据线面平行的性质定理可得A选项正确; 对于B,当,m时,若nm,n,则n,但题目中无条件n,故B不一定成立; 对于C,若mn,
3、m,n,则与相交或平行,故C错误; 对于D,若m,n,则m与n平行或异面,则D错误,故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 根据向量加法的多边形法则以及已知可得,,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,(0,1,5)(
4、1,2,0)(2,1,0)(3,4,5),,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,5.(2019凉山诊断)如图,在四棱柱ABCDA1B1C1D1中,E,F分别是AB1,BC1的中点,下列结论中,正确的是 A.EFBB1 B.EF平面BCC1B1 C.EF平面D1BC D.EF平面ACC1A1,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 连接B1C交BC1于F, 由于四边形BCC1B1是平行四边形,对角线互相平分,故F是B1C的中点. 因为E是A
5、B1的中点,所以EF是B1AC的中位线,故EFAC, 所以EF平面ACC1A1.故选D.,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,7.已知棱长为2的正方体ABCDA1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 因为球与各面相切,所以直径为2, 且AC,AB1,CB1的中点在所求的切面圆上,所以所求截面为此三点构成的边长为 的正三角形的外接圆, 由正弦定理
6、知,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,8.已知向量n(2,0,1)为平面的法向量,点A(1,2,1)在内,则 P(1,2,2)到的距离为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,9.正方体ABCDA1B1C1D1中,点P在A1C上运动(包括端点),则BP与AD1所成角的取值范围是,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 以点D为原点,DA,DC,DD1分别为x,
7、y,z轴建立空间直角坐标系,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,因为BC1AD1.故选D.,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,A.30 B.45 C.60 D.90,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 连接AC1, 则EFAC1,直线EF与平面AA1B1
8、B所成的角,就是直线EF与平面AA1B1B所成的角,AC1与平面AA1B1B所成的角; 作C1DA1B1于D,连接AD,因为直三棱柱ABCA1B1C1中,CACB4,所以底面是等腰三角形,则C1D平面AA1B1B,可知C1AD就是直线EF与平面AA1B1B所成的角,,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1
9、9,20,12.(2019四省联考诊断)如图所示,四边形ABCD为边长为2的菱形,B60,点E,F分别在边BC,AB上运动(不含端点),且EFAC,沿EF把平面BEF折起,使平面BEF底面ECDAF,当五棱锥BECDAF的体积最大时,EF的长为,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 由EFAC可知BEF为等边三角形,,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,二、填空题(本大题共4小题,每小题5分,共20分),1,2,3,4,5,
10、6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,13.设m,n为空间两条不同的直线,为空间两个不同的平面,给出下列命题: 若m,m,则; 若m,m,则; 若m,mn,则n; 若m,则m. 其中正确的命题序号是_.,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解析 对于,若m,m,则与可能相交,故错误; 对于,若m,m,根据线面垂直和线面平行的性质定理以及面面垂直的判定定理得到,故正确; 对于,若m,mn,则n可能在内,故错误, 对于,若m,则根据线面垂直的性质定理以及面面平行的性质定理得到m
11、,故正确.故答案为.,21,22,14.如图,在三棱柱A1B1C1ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥AFED的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1V2的值 为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 设三棱柱的高为h,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,15.如图,直三棱柱ABCA1B1C1的六个顶点都在半径为1的半球面上,ABAC,侧面BCC1B1是半球底面圆的内接正方形,则侧面A
12、BB1A1的面积为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,三棱柱ABCA1B1C1为直三棱柱,平面ABC平面BCC1B1, BC为截面圆的直径,BAC90.ABAC,AB1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,上、下底面三角
13、形斜边的中点连线的中点是该三棱柱的外接球的球心,,a2b2h282ab, ab4.当且仅当ab2时“”成立.,21,22,三、解答题(本大题共70分) 17.(10分)如图,在四棱锥PABCD中,底面ABCD是正方形,AC与BD交于点O,PC底面ABCD,点E为侧棱PB的中点.,求证:(1)PD平面ACE;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,证明 连接OE.,因为O为正方形ABCD对角线的交点, 所以O为BD的中点. 因为E为PB的中点, 所以PDOE. 又因为OE平面ACE,PD平面ACE, 所以PD平面ACE.
14、,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,(2)平面PAC平面PBD.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,证明 在四棱锥PABCD中, 因为PC底面ABCD,BD底面ABCD, 所以BDPC. 因为O为正方形ABCD对角线的交点, 所以BDAC. 又PC,AC平面PAC,PCACC, 所以BD平面PAC. 因为BD平面PBD, 所以平面PAC平面PBD.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
15、,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,(1)设M是PC上的一点,证明:平面MBD平面PAD;,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,所以AD2BD2AB2.故ADBD. 又平面PAD平面ABCD, 平面PAD平面ABCDAD, BD平面ABCD, 所以BD平面PAD, 又BD平面MBD, 故平面MBD平面PAD.,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,(2
16、)求四棱锥PABCD的体积.,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,解 如图,过P作POAD交AD于O, 由于平面PAD平面ABCD, 所以PO平面ABCD. 因此PO为四棱锥PABCD的高,又PAD是边长为4的等边三角形.,在四边形ABCD中,ABDC,AB2DC,,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,此即为梯形ABCD的高,,21,22,(1)求证:BCBE;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17、17,18,19,20,21,22,证明 连接BD,取CD的中点F,连接BF,则直角梯形ABCD中,BFCD,BFCFDF, CBD90,即BCBD. DE平面ABCD, BC平面ABCD,BCDE, 又BDDED,BC平面BDE. 由BE平面BDE得,BCBE.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,DE
18、2,,又AB2,BE2AB2AE2, ABAE,,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,四棱锥EABCD的侧面积为,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.(12分)(2019青岛调研)如图,在长方形ABCD中,AB,AD2,E,F为线段AB的三等分点,G,H为线段DC的三等分点.将长方形ABCD卷成以AD为母线的圆柱W的半个侧面,AB,CD分别为圆柱W上、下底面的直径.,(1)证明:平面ADHF平面BCHF;,21,22,20,1,2,3
19、,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,证明 因为H在下底面圆周上,且CD为下底面半圆的直径, 所以DHCH,又因为DHFH,且CHFHH, 所以DH平面BCHF. 又因为DH平面ADHF, 所以平面 ADHF平面BCHF.,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(2)求二面角ABHD的余弦值.,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 以H为坐标原点,分别以HD,HC,HF所在直线为x,y,z轴建
20、立空间直角坐标系. 设下底面半径为r,由题意得r, 所以r1,CD2. 因为G,H为DC的三等分点, 所以HDC30,,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,设平面ABH的法向量为n(x,y,z),,设平面BHD的法向量m(x,y,z).,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,所以平面BHD的法向量m(0,2, 1), 由图形可知,二面角ABHD的平面角为锐角,设为,,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13
21、,14,15,16,17,18,19,21.(12分)(2019成都七中诊断)如图,在多面体ABCDE中,AC和BD交于一点,除EC以外的其余各棱长均为2.,21,22,(1)作平面CDE与平面ABE的交线l,并写出作法及理由;,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 过点E作AB(或CD)的平行线,即为所求直线l. AC和BD交于一点, A,B,C,D四点共面. 又四边形ABCD边长均相等, 四边形ABCD为菱形,从而ABDC. 又AB平面CDE,且CD平面CDE, AB平面CDE. AB平面ABE,且平面ABE平面CDEl,
22、 ABl.,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(2)求证:平面BDE平面ACE;,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,证明 取AE的中点O,连接OB,OD. ABBE,DADE,OBAE,ODAE. 又OBODO, AE平面OBD, BD平面OBD,故AEBD. 又四边形ABCD为菱形,ACBD. 又AEACA, BD平面ACE. 又BD平面BDE, 平面BDE平面ACE.,21,22,20,1,2,3,4,5,6,7,8,9,10,11
23、,12,13,14,15,16,17,18,19,(3)若多面体的体积为2,求直线DE与平面BCE所成角的正弦值.,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 由VEABCD2VEABD2VDABE2, 即VDABE1. 设三棱锥DABE的高为h,,21,22,DO平面ABE. 以点O为坐标原点,OB,OE,OD所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,设平面BCE的一个法向量为n(x,y,z),,
24、21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,(1)求证:平面ADC平面BCDE;,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,证明 CD 平面ABC,BECD, BE平面ABC,BEAB.,21,22,ACBC, 又CD 平面ABC,BC平面ABC, CDBC,故BC平面ACD. BC平面BCDE,平面ADC平面BCDE.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,20,1,2,3,4
25、,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 方法一 假设点M存在,过点M作MNCD于N,连接AN,作MFCB于F,连接AF. 平面ADC平面BCDE, 平面ADC平面BCDEDC, MN平面BCDE,MN平面ACD, MAN为MA与平面ACD所成的角.,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,方法二 以点C为坐标原点,CA,CB,CD所在直线分别为x轴,y轴,z轴,建立如图所示空间直角坐标系, 则A(4,0,0),B(0,2,0),D(0,0,4),E(0,2,1),C(0,0,0),,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,设直线AM与平面ACD所成的角为,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,