鲁京津琼专用2020版高考数学大一轮复习第六章数列阶段自测卷四课件

上传人:hua****011 文档编号:107046 上传时间:2019-12-12 格式:PPTX 页数:39 大小:1.91MB
下载 相关 举报
鲁京津琼专用2020版高考数学大一轮复习第六章数列阶段自测卷四课件_第1页
第1页 / 共39页
鲁京津琼专用2020版高考数学大一轮复习第六章数列阶段自测卷四课件_第2页
第2页 / 共39页
鲁京津琼专用2020版高考数学大一轮复习第六章数列阶段自测卷四课件_第3页
第3页 / 共39页
鲁京津琼专用2020版高考数学大一轮复习第六章数列阶段自测卷四课件_第4页
第4页 / 共39页
鲁京津琼专用2020版高考数学大一轮复习第六章数列阶段自测卷四课件_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、阶段自测卷(四),第六章 数列,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1.(2019衡水中学考试)已知等差数列an的公差为2,前n项和为Sn,且S10100,则a7的值为 A.11 B.12 C.13 D.14,所以a11. 所以an2n1, 故a713.故选C.,一、选择题(本大题共12小题,每小题5分,共60分),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 设等差数列的首项为a1,公差为d, 则a3a12d,a7a16d. 因为a1,a3,

2、a7成等比数列, 所以(a12d)2a1(a16d),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,3.(2019四省联考)已知等差数列an的前n项和为Sn,若S630,S1010,则S16等于 A.160 B.80 C.20 D.40,解得a110,d2, 故S1616a1120d1610120(2)80,故选B.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,A.3 B.5 C.31 D.33,1,2,3,4,5,6,7,8,9,10,11,12,13,

3、14,15,16,17,18,19,20,21,22,5.(2019湖南五市十校联考)已知数列an满足2anan1an1(n2),a2a4 a612,a1a3a59,则a1a6等于 A.6 B.7 C.8 D.9,解析 由数列an满足2anan1an1(n2)得数列an为等差数列, 所以a2a4a63a412,即a44, 同理a1a3a53a39,即a33, 所以a1a6a3a47.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 依题意可知,这个同学第1天,第2天,跑的路程依次成首项为5 000,公差为200的等差数列,

4、,6.(2019新乡模拟)为了参加冬季运动会的5 000 m长跑比赛,某同学给自己制定了7天的训练计划:第1天跑5 000 m,以后每天比前1天多跑200 m,则这个同学7天一共将跑 A.39 200 m B.39 300 m C.39 400 m D.39 500 m,A.38 B.20 C.10 D.9,解析 因为an是等差数列,所以am1am12am,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,由S2m138知am0,所以am2,,即(2m1)238,解得m10,故选C.,1,2,3,4,5,6,7,8,9,10,1

5、1,12,13,14,15,16,17,18,19,20,21,22,解析 设等比数列an的公比为q, 3a2 , 2a3,a4成等差数列, 22a33a2a4, 4a2q3a2a2q2,化为q24q30, 解得q1或3. 又数列的各项均不相等,q1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,9.(2019广东六校联考)将正奇数数列1,3,5,7,9,依次按两项、三项分组,得到分组序列如下: (1,3),(5,7,9),(11,13),(15,17,19),称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列

6、中的2 019位于分组序列中的 A.第404组 B.第405组 C.第808组 D.第809组,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 正奇数数列1,3,5,7,9,的通项公式为an2n1, 则2 019为第1 010个奇数, 因为按两项、三项分组, 故按5个一组分组是有202组, 故原数列中的2 019位于分组序列中的第404组,故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,1

7、4,15,16,17,18,19,20,21,22,A.1 290 B.1 280 C.1 281 D.1 821,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,当n2时,anSnSn1(n1)2n21, 故 a91012811 281.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 由Snn24n,可得an2n3,,1,2,3,4,5,6,

8、7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,二、填空题(本大题共4小题,每小题5分,共20分),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,13.设等差数列an的公差为d,其前n项和为Sn,若a4a100,2S12S210,则d的值为_.,10,解析 由a

9、4a100,2S12S210,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,a1,a2,an分别为1,0,5,0,9,0,13,0,17,0,21,0, 归纳可得,每相邻四项和为4, S2 0195044a2 017a2 018a2 019 2 016(122 017)0(22 0191) 2 01642 020.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,2 020,16.(2019长沙长郡中学调研)已知点列P1(1,y1),P2(2,y2),P3(3

10、,y3),Pn1(n1,yn1)在x轴上的投影为Q1,Q2,Qn1,且点Pn1满足y11,直线PnPn1的斜率 2n.则多边形P1Q1Qn1Pn1的面积为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,32nn3,解析 根据题意可得yn1yn2n,结合y11,应用累加法,可以求得yn1 2n11, 根据题意可以将该多边形分成n个直角梯形计算,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,总的面积应用分组求和法,可求得多边形的面积为S3(2n1)n32nn

11、3.,三、解答题(本大题共70分),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,17.(10分)已知an是以a为首项,q为公比的等比数列,Sn为它的前n项和. (1)当S1,S3,S4成等差数列时,求q的值;,解 由已知,得anaqn1,因此 S1a,S3a(1qq2),S4a(1qq2q3). 当S1,S3,S4成等差数列时,S4S3S3S1, 可得aq3aqaq2,化简得q2q10.,(2)当Sm,Sn,Sl成等差数列时,求证:对任意自然数k,amk,ank,alk也成等差数列.,1,2,3,4,5,6,7,8,9,10

12、,11,12,13,14,15,16,17,18,19,20,21,22,证明 若q1,则an的各项均为a, 此时amk,ank,alk显然成等差数列. 若q1,由Sm,Sn,Sl成等差数列可得SmSl2Sn,,整理得qmql2qn. 因此amkalkaqk1(qmql)2aqnk12ank, 所以amk,ank,alk成等差数列.,解 4Sn5an5,4a15a15,a15. 当n2时,4Sn15an15,4an5an5an1, an5an1, an是以5为首项,5为公比的等比数列, an55n15n. bnlog55nn.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,

13、15,16,17,18,19,20,21,22,18.(12分)(2019安徽皖南八校联考)数列an的前n项和记为Sn,且4Sn5an5,数列bn满足bnlog5an. (1)求数列an,bn的通项公式;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,19.(12分)(2019安徽皖中名校联考)已知数列an满足:an12ann1,a13. (1)设数列bn满足:bnann,求证:数列bn是等比数列;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,又b1a113

14、12, bn是以2为首项,2为公比的等比数列.,(2)求出数列an的通项公式和前n项和Sn.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 由(1)得bn2n,an2nn, Sn(211)(222)(2nn)(21222n)(123n),20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.(12分)(2019湖南衡阳八中月考)已知数列an的前n项和为Sn,且Sn2an n(nN*). (1)证明:an1是等比数列;,证明 当n1时,S12a11,a11. Sn2ann

15、,Sn12an1(n1), an12an1, an112(an1), an1是以a112为首项,2为公比的等比数列.,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,解 由(1)得an12n, bnlog22nn,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21.(12分)(2019青岛调研)已知数列an的各项均为正数,其前n项和为Sn.,21,22,(2)若a11,a22,bna2n1a2n,且数列bn是公比为3的等比数列,求S2n.,解 S2na1a2a

16、2n(a1a2)(a3a4)(a2n1a2n)b1b2bn, b1a1a23,bn是公比为3的等比数列,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22.(12分)(2019湖南岳阳一中质检)已知数列an的前n项和为Sn,Sn2an2. (1)求数列an的通项公式;,21,22,解 Sn2an2, Sn12an12, 得an12an12an(n1),,an是首项为2,公比为2的等比数列. an2n.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,当n1时,b11成立,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,m4,实数m的最大值为4.,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习