扫描全能王创建扫描全能王创建扫描全能王创建扫描全能王创建扫描全能王创建扫描全能王创建扫描全能王创建扫描全能王创建扫描全能王创建高二数学期末试题卷第1页共4页2018学年第一学期高二年级期末测试数学学科试卷说明:本试卷分第卷(选择题)和第卷(非选择题)两部分,满分2温州二外高一数学组必修42020年(
高一数学 浙江Tag内容描述:
1、(四四)概率与统计概率与统计 1.随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流 量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求, 准备推出一款流量 包.该通信公司选了 5 个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的 定价方案作为试点, 经过一个月的统计, 发现该流量包的定价 x(单位: 元/月)和购买人数 y(单 位:万人)的关系如表: 流量包的定价(元/月) 30 35 40 45 50 购买人数(万人) 18 14 10 8 5 (1)根据表中的数据,运用相关系数进行分析说明,是否可以。
2、(七七)坐标系与参数方程坐标系与参数方程 1.已知在平面直角坐标系 xOy 中,直线 l 的参数方程是 x 2 2 t, y 2 2 t4 2 (t 为参数),以原点 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2cos 4 . (1)判断直线 l 与曲线 C 的位置关系; (2)设 M 为曲线 C 上任意一点,求 xy 的取值范围. 解 (1)由 x 2 2 t, y 2 2 t4 2, 消去 t,得直线 l 的普通方程为 yx4 2. 由 2cos 4 , 得 2cos cos 42sin sin 4 2cos 2sin . 2 2cos 2sin , 即 x2 2xy2 2y0. 化为标准方程得 x 2 2 2 y 2 2 21. 圆心坐标为 2 2 , 2 2 ,半径为 1. 圆。
3、(八八)不等式选讲不等式选讲 1.(2019 天水市第一中学模拟)设函数 f(x)|2xa|x2|(xR,aR). (1)当 a1 时,求不等式 f(x)0 的解集; (2)若 f(x)1 在 xR 上恒成立,求实数 a 的取值范围. 解 (1)a1 时,f(x)0 可得|2x1|x2|,即(2x1)2(x2)2, 化简得:(3x3)(x1)0,所以不等式 f(x)0 的解集为(,1)(1,). (2)当 a0),求4 a 1 b的取值范围. 解 (1)由 f(x)1, 即|2x1|1,得12x11, 解得1x0. 即不等式的解集为x|1x0. (2)g(x)f(x)f(x1)|2x1|2x1| |2x1(2x1)|2, 当且仅当(2x1)(2x1)0, 即1 2x 1 2时取等号, m2. ab2(a,b0), 4 a 1 b 1 2(ab) 4 a 1 b 。
4、回扣回扣 5 立体几何与空间向量立体几何与空间向量 1.三视图 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察 几何体画出的轮廓线.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左) 一样高. (2)三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在 正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样. 2.柱、锥、台、球体的表面积和体积 侧面展开图 表面积 体积 直棱柱 长方形 S2S底S侧 VS底 h 圆柱 长方形 S2r22rl Vr2 l 棱锥 由若干个。
5、回扣回扣 3 三角函数三角函数、三角恒等变换与解三角形三角恒等变换与解三角形 1.终边相同角的表示 所有与角 终边相同的角,连同角 在内,可构成一个集合 S|k 360 ,kZ,即 任一与角 终边相同的角,都可以表示成角 与整数个周角的和. 2.几种特殊位置的角的集合 (1)终边在 x 轴非负半轴上的角的集合:|k 360 ,kZ. (2)终边在 x 轴非正半轴上的角的集合:|180 k 360 ,kZ. (3)终边在 x 轴上的角的集合:|k 180 ,kZ. (4)终边在 y 轴上的角的集合:|90 k 180 ,kZ. (5)终边在坐标轴上的角的集合:|k 90 ,kZ. (6)终边在 yx 上的角的集合:|45。
6、 (一一)三角函数与解三角形三角函数与解三角形 1.(2019 沈阳郊联体模拟)若 sin 3x 2 3,则 cos 32x 等于( ) A.7 9 B. 1 9 C. 1 9 D. 7 9 答案 C 解析 令 3x,则 2x 32, 所以 cos 2x 3 cos(2)cos 2 2sin211 9. 2.(2019 海口调研)下列不等式正确的是( ) A.sin 130 sin 40 log34 B.tan 226 log52 答案 D 解析 sin 40 1sin 80 1 2log52. 3.(2019 钦州模拟)在ABC 中,角 A,B,C 的对边分别是 a,b,c,若 a2,C 4,tan B 4 3,则ABC 的面积等于( ) A.8 7 B. 3 7 C. 4 7 D. 2 7 答案 A 解析 根据题干条件 tan B4 3可得到 sin B4 。
7、 典例 2 (12 分)(2018 全国)已知数列an满足 a11,nan12(n1)an.设 bnan n . (1)求 b1,b2,b3; (2)判断数列bn是否为等比数列,并说明理由; (3)求an的通项公式. 审题路线图 1将题目中的递推公式变形写出 an1的表达式分别令 n1,2,3求得 b1,b2,b3 2将题目中的递推公式变形得到 an1 n12 an n 根据 bnan n 得到 bn12bn根据等比数列 的定义判定 3由2求得 bn进而求得 an 规 范 解 答 分 步 得 分 构 建 答 题 模 板 解 (1)由条件可得 an12n1 n an, 将 n1 代入得 a24a1, 又 a11, a24,即 b22,1 分 将 n2 代入得 a33a2, a312,即 b34,2 。
8、 典例 4 (12 分)(2019 全国)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药 更有效, 为此进行动物试验.试验方案如下: 每一轮选取两只白鼠对药效进行对比试验.对于两 只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验. 当其中一种药治愈的白鼠比另一种药治愈的白鼠多 4 只时,就停止试验,并认为治愈只数多 的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的 白鼠未治愈则甲药得 1 分,乙药得1 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈 则乙药。
9、第第 3 讲讲 导数的简单应用导数的简单应用(小题小题) 热点一 导数的几何意义与定积分 应用导数的几何意义解题时应注意: (1)f(x)与 f(x0)的区别与联系,f(x0)表示函数 f(x)在 xx0处的导数值,是一个常数; (2)函数在某点处的导数值就是对应曲线在该点处切线的斜率; (3)切点既在原函数的图象上也在切线上. 例 1 (1)(2019 湖南省三湘名校联考)在二项式 x2 a 2x 6 的展开式中,其常数项是 15.如图所 示,阴影部分是由曲线 yx2和圆 x2y2a 及 x 轴在第一象限围成的封闭图形,则封闭图形 的面积为( ) A. 4 1 6 B. 4 1 6 C. 4 D.1 6 答案 B 解。
10、 典例 5 (12 分)(2018 全国)设椭圆 C:x 2 2y 21 的右焦点为 F,过 F 的直线 l 与 C 交于 A, B 两点,点 M 的坐标为(2,0). (1)当 l 与 x 轴垂直时,求直线 AM 的方程; (2)设 O 为坐标原点,证明:OMAOMB. 审题路线图 1l 与 x 轴垂直l 的方程为 x1将 l的方程与椭圆 C 的方程联立解得 A 点坐标得到直 线 AM 的方程 2先考虑 l 与 x 轴垂直或 l与 x 轴重合的特殊情况要证的结论再考虑 l 与 x 轴不垂直也不 重合的一般情况设 l 的方程并与椭圆方程联立得 x1x2,x1x2用过两点的斜率公式写出 kMA,kMB计算 kMAkMB得 kMAkMB0OMAOMB. 规 范 解 答。
11、 典例 6 (12 分)(2019 全国)已知函数 f(x)sin xln(1x),f(x)为 f(x)的导数,证明: (1)f(x)在区间 1, 2 上存在唯一极大值点; (2)f(x)有且仅有 2 个零点. 审题路线图 1设 gxfx对 gx求导得出 gx的单调性,得证 2对 x 进行讨论分四个区间1,0, 0, 2 , 2, ,根据用导数判断函数 单调性来确定零点个数 规 范 解 答 分 步 得 分 构 建 答 题 模 板 证明 (1)设 g(x)f(x),则 g(x)cos x 1 1x,g(x)sin x 1 1x2. 2 分 当 x 1, 2 时,g(x)单调递减,3 分 而 g(0)0,g 2 0;当 x , 2 时,g(x)0. 从而,f(x)。
12、第第 4 讲讲 导数的热点问题导数的热点问题(大题大题) 热点一 导数的简单应用 利用导数研究函数的单调性是导数应用的基础,只有研究了函数的单调性,才能研究其函数 图象的变化规律,进而确定其极值、最值和函数的零点等.注意:若可导函数 f(x)在区间 D 上 单调递增,则有 f(x)0 在区间 D 上恒成立,但反过来不一定成立. 例 1 (2019 武邑调研)已知函数 f(x)ln xax2bx(其中 a,b 为常数且 a0)在 x1 处取得 极值. (1)当 a1 时,求 f(x)的单调区间; (2)若 f(x)在(0,e上的最大值为 1,求 a 的值. 解 (1)因为 f(x)ln xax2bx,x0, 所以 f(x)1。
13、第第 3 讲讲 平面向量平面向量 1.(2019 佛山模拟)已知向量 a(2,1),b(1,k),a(2ab),则 k 等于( ) A.8 B.6 C.6 D.8 答案 A 解析 a(2,1),b(1,k),2ab(3,2k), a(2ab),则 a()2ab 62k0, 解得 k8. 2.(2019 福建三校联考)若平面向量 a, b 满足 a (ab)3, 且 a 1 2, 3 2 ,| |b 2 5, 则|ab 等于( ) A.5 B.3 2 C.18 D.25 答案 A 解析 a 1 2, 3 2 ,|a|1, 又 a()ab 3| |a 2a b3a b2, (ab)2| |a 22a b| | b 2142025, |ab 5. 3.(2019 乐山模拟)如图所示,AD 是ABC 的中线,O 是 AD 的中点,若CO AB。
14、第第 6 讲讲 古典概型与几何概型古典概型与几何概型 1.(2019 全国)我国古代典籍周易用“卦”描述万物的变化,每一“重卦”由从下到上 排列的 6 个爻组成,爻分为阳爻“”和阴爻“ ”,如图就是一重卦,在所有重 卦中随机取一重卦,则该重卦恰有 3 个阳爻的概率是( ) A. 5 16 B. 11 32 C. 21 32 D. 11 16 答案 A 解析 由 6 个爻组成的重卦种数为 2664,在所有重卦中随机取一重卦,该重卦恰有 3 个阳 爻的种数为 C36654 32120.根据古典概型的概率计算公式得,所求概率 P 20 64 5 16.故选 A. 2.(2019 黄冈调研)黄冈市的天气预报显示,大别山。
15、第第 7 讲讲 数学文化数学文化 1.(2019 张家界模拟)数的概念起源于大约 300 万年前的原始社会,如图 1 所示,当时的人类 用在绳子上打结的方法来记数,并以绳结的大小来表示猎物的大小,即“结绳计数”.图 2 所 示的是某个部落一段时间内所擒获猎物的数量,在从右向左依次排列的不同绳子上打结,右 边绳子上的结每满 7 个即在左边的绳子上打一个结,请根据图 2 计算该部落在该段时间内所 擒获的猎物总数为( ) A.336 B.510 C.1 326 D.3 603 答案 B 解析 由题意知,图 2 中的“结绳计数”法是七进制计数法,所以图 2 中该部落在该段时间 内。
16、数学试卷 一、选择题 1. 设集合 ? ? 2 4,ln1Ax yxBx yx?,则AB?() A.?2,2?B.?2,2?C.?1,2?D.?1,2? 2. 设M为不等式 10 10 xy xy ? ? ? ? ? ? 所表示的平面区域,则位于M内的点是() A.?0,2B.?2,0?C.?0, 2?D.?2,0 3. 某空间几何体的三视图如图所示,则该几何体的体积为() A. 7 6 B. 5 4 C. 4 3 D. 5 3 4.“3“a ?是“函数? ?1f xxxa xR? ?的最小值等于 2”的() A. 充分不必要条件B. 必要不充分条件 C. 既不充分也不必要条件D. 充要条件 5. 在我国古代数学著作详解九章算法中,记载着如图所示的一张数表,表 中除 1 以外的每一个数都等。
17、浙江师大附中浙江师大附中 2020 届高三数学模拟试卷(三)届高三数学模拟试卷(三) 一、选择题:本大题共一、选择题:本大题共 10 小题,共小题,共 40 分分 1已知 i 为虚数单位,则 = 1+2 =( ) A 2 5 1 5 B 2 5 + 1 5 C2 5 1 5 D2 5 + 1 5 2设集合 UxZ|1x6,A3,5,Bx|x23x40,U(AB)( ) A2,4 B2,4,5 C2,3,4,5 D2,3,4,6 3如图,在平行四边形 ABCD 中,E 是 BC 的中点,F 是线段 AE 上靠近点 A 的三等分点, 则 =( ) A 1 3 + 2 3 B1 3 2 3 C1 3 5 6 D1 3 3 4 4已知函数() = 2, 0 2,0,则下列结论中不正确的是( 。
18、2 温州二外高一数学组 必修 4 2020 年(复习)自主生长单 主备:林小平 审核:梅映 温州二外高一数学周练二温州二外高一数学周练二 一、选择题(每题 5 分共 50 分) 1在ABC中,若 13,3, 120ABBCC,则AC=( ) A1 B2 C3 D4 2已知ABC中4,4 3,30abA,则B等于( ) A60或 120 B30 C60 D30或 150 3ABC 中, 如果 cosAcosBcosC abc , 那么ABC 是( ) A直角三角形 B等边三角形 C等腰直角三角形 D钝角三角形 4 在ABC中, 内角 , ,A B C的对边分别为, ,a b c, 若 22 3,sin2 3sinabbcCB, 则角A为( ) A30 B60 C120 D150 5在ABC中,角 , ,A B C所。
19、 高二 数 学期末 试题卷 第 1 页 共 4 页 2018 学年第一学期 高二 年级 期末 测试 数学学科试卷 说明: 本试卷分第 卷(选择题)和第卷(非选择题)两部分,满分 150分; 考试时间 120分钟,不得使用计算器,请考生将所有题目的答案均写在答题卷上。 第 卷 (选择题 共 40 分) 一、 选择题 (本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有 一项是 符合题目要求的。 ) 1 已知圆 C 的方程为 22( 2) ( 3) 2xy,则它的圆心和半径分别 为 A (2,3) ,2 B (2, 3) ,2 C (2,3) , 2 D (2, 3) , 2 2 直线 3 1 0xy 的倾斜。