,第六章 数列与数学归纳法,第3讲 等比数列及其前n项和,第六章 数列与数学归纳法,第2讲 等差数列及其前n项和,第六章 数列与数学归纳法,核心素养提升(六),第六章 数列与数学归纳法,第5讲 数列的综合应用,第二章 推理与证明,习题课 数学归纳法,学习目标 1.进一步掌握数学归纳法的实质与步骤,掌
4.1数学归纳法ppt课件Tag内容描述:
1、第二章 推理与证明,习题课 数学归纳法,学习目标 1.进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题的方法. 2.掌握证明nk1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 归纳法,归纳法是一种 的推理方法,分 和_ 两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明.,由特殊到一般,完全归纳法,不完全归,纳法,知识点二 数学归纳法,(1)应用范围:作为一种证明方法,用于证明一些与 有关的。
2、第二章 推理与证明,2.3 数学归纳法,学习目标 1.了解数学归纳法的原理. 2.能用数学归纳法证明一些简单的数学命题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 数学归纳法,思考1,答案,答案 成立.,对于一个与正整数有关的等式 n(n1)(n2)(n50)0.,验证当n1,n2,n50时等式成立吗?,思考2,答案 不能,上面的等式只对n取1至50的正整数成立.,能否通过以上等式归纳出当n51时等式也成立?为什么?,梳理,(1)数学归纳法的定义 一般地,证明一个与 n有关的命题,可按下列步骤进行: (归纳奠基)证明当n取第一个值n0(n0N*)时命题成立; (归纳。
3、复习课,第四讲用数学归纳法证明不等式,学习目标 1.梳理数学归纳法的思想方法,初步形成“归纳猜想证明”的思维模式. 2.熟练掌握用数学归纳法证明不等式、等式等问题的证明步骤.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.数学归纳法是用有限个步骤,就能够处理完无限多个对象的方法. 2.一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤: (1。
4、二用数学归纳法证明不等式,第四讲用数学归纳法证明不等式,学习目标 1.会用数学归纳法证明与正整数有关的不等式. 2.了解贝努利不等式,并会证明贝努利不等式. 3.体会归纳猜想证明的思想方法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点用数学归纳法证明不等式,思考1用数学归纳法证明问题必须注意的步骤是什么?,答案(1)归纳奠基:验证初始值nn0. (2)归纳递推:在假设nk。
5、4 数学归纳法,第一章 推理与证明,学习目标,1.了解数学归纳法的原理. 2.能用数学归纳法证明一些简单的数学命题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 数学归纳法,对于一个与正整数有关的等式n(n1)(n2)(n50)0.,思考1 验证当n1,n2,n50时等式成立吗?,答案 成立,思考2 能否通过以上等式归纳出当n51时等式也成立?为什么?,答案 不能,上面的等式只对n取1至50的正整数成立,梳理 (1)数学归纳法的定义 用来证明某些与 n有关的命题,可按下列步骤进行: 验证:当n取第一个值n0(如n01或2等)时,命题成立; 在假设当nk(kn0,kN)时。
6、4.4 数学归纳法 学 习 目 标 核 心 素 养 1.了解数学归纳法的原理难点易混点 2.能用数学归纳法证明一些简单的数学命题重点难点 1.通过数学归纳法定义的学习,体现了数学抽象的核心素养. 2.通过数学归纳法的应用,培养学生逻辑推理的。
7、一一 数学归纳法数学归纳法 学习目标 1.了解数学归纳法的基本原理.2.了解数学归纳法的应用范围.3.会用数学归纳法 证明一些简单问题 知识点 数学归纳法 在学校,我们经常会看到这样的一种现象:排成一排的自行车,如果一个同学将第一辆自行 车不小心弄倒了,那么整排自行车就会倒下 思考 1 试想要使整排自行车倒下,需要具备哪几个条件? 答案 第一辆自行车倒下;任意相邻的两辆自行车,前一辆倒下一定导致。
8、一数学归纳法,第四讲用数学归纳法证明不等式,学习目标 1.了解数学归纳法的基本原理. 2.了解数学归纳法的应用范围. 3.会用数学归纳法证明一些简单问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点数学归纳法,在学校,我们经常会看到这样的一种现象:排成一排的自行车,如果一个同学将第一辆自行车不小心弄倒了,那么整排自行车就会倒下. 思考1试想要使整排自行车倒下,需要具备哪几。