1专题训练(一) 直角三角形与勾股定理的应用 类型之一 共边直角三角形的问题1如图 1ZT1,一架梯子的长度为 2.5 米,斜靠在墙上,梯子底部离墙底端 0.7米(1)这个梯子顶端离地面_米;(2)如果梯子的顶端下滑了 0.4 米,那么梯子的底部在水平方向上滑动了几米?图 1ZT12如图 1ZT2,
1.3勾股定理的应用 同步训练含答案Tag内容描述:
1、1专题训练(一) 直角三角形与勾股定理的应用 类型之一 共边直角三角形的问题1如图 1ZT1,一架梯子的长度为 2.5 米,斜靠在墙上,梯子底部离墙底端 0.7米(1)这个梯子顶端离地面_米;(2)如果梯子的顶端下滑了 0.4 米,那么梯子的底部在水平方向上滑动了几米?图 1ZT12如图 1ZT2,在离水面高度为 5 米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为 13 米,此人以每秒 0.5 米的速度收绳,10 秒后船移动到点 D 的位置,则船向岸边移动了多少米?(假设绳子是直的,结果保留根号)图 1ZT22 类型之二 构造直角三角形解决问题3由于过度采伐森林和。
2、勾股定理在实际生活中的应用知识点 勾股定理的实际应用1如果梯子的底端与某高楼竖直墙的距离为 5 米,那么 13 米长的梯子可以达到该楼的高度是( )A12 米 B13 米 C14 米 D15 米2一根旗杆在离地面 4.5 米的地方折断,旗杆顶端落在离旗杆底部 6 米处,则旗杆折断前高为( )A10.5 米 B7.5 米 C12 米 D8 米3如图 1213,某工程队沿 AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从 AC 上的一点 B 取ABD120,BD210 m,D30,要正好能使 A,C,E成一条直线,那么 E,D 两点之间的距离等于( )图 1213A105 m B210 m C70 m D105 m3 3 3。
3、1/1117.1 勾股定理课时 2 勾股定理的实际应用 基础训练知识点 勾股定理的实际应用1.(2017 广东深圳锦华实验学校期中)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多 1m,当它把绳子的下端拉开 4m 后,发现下端刚好接触地面,则旗杆的高为 ( )A.7m B.7.5m C.8m D.9m2.(2017 陕西西安铁一中月考改编)如图,已知圆柱底面的周长为 4dm,圆柱的高为 2dm,在圆柱的侧面上,过点 A 和点 C 嵌有一圈金属丝,则这圈金属丝的周长最小为 ( )A.4 dm B.2 dm22C.2 dm D.4 dm553.(2018 湖南湘潭中考)九章算术是我国古代最重要的数学著作之一,在“勾股”。
4、2018-2019 学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word 解析版)学校:_姓名:_ 班级:_一选择题(共 10 小题)1如图,CD 是一平面镜,光线从 A 点射出经 CD 上的 E 点反射后照射到 B 点,设入射角为 (入射角等于反射角), ACCD,BDCD ,垂足分别为 C、D,且 AC=3,BD=6,CD=12,则 CE 的值为( )A3 B4 C5 D62如图,一个梯子 AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动后停在 DE 的位置上,测得 BD 长为 0.9 米,则梯子顶端 A 下落了( )A0.9 米 B1.3 米 C1.5 米 D2 米3。
5、1.3 勾股定理的应用勾股定理的应用 1如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直 角边分别为 6m 和 8m按照输油中心 O 到三条支路的距离相等来连接管道,则 O 到三条支路的管道总长(计算时视管道为线,中心 O 为点)是( ) A2m B3m C6m D9m 2一个正方体物体沿斜坡向下滑动,其截面如图所示正方形 DEFH 的边长为 2 m,坡角A 30 ,B 9。