专题2.9 函数图象高与低差值正负恒成立高考数学解答题压轴题突破讲义(解析版)

上传人:hua****011 文档编号:95850 上传时间:2019-10-31 格式:DOC 页数:25 大小:3.10MB
下载 相关 举报
专题2.9 函数图象高与低差值正负恒成立高考数学解答题压轴题突破讲义(解析版)_第1页
第1页 / 共25页
专题2.9 函数图象高与低差值正负恒成立高考数学解答题压轴题突破讲义(解析版)_第2页
第2页 / 共25页
专题2.9 函数图象高与低差值正负恒成立高考数学解答题压轴题突破讲义(解析版)_第3页
第3页 / 共25页
专题2.9 函数图象高与低差值正负恒成立高考数学解答题压轴题突破讲义(解析版)_第4页
第4页 / 共25页
专题2.9 函数图象高与低差值正负恒成立高考数学解答题压轴题突破讲义(解析版)_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、【题型综述】数形结合好方法:对于函数与的函数值大小问题,常常转化为函数的图象在 上方(或下方)的问题解决,而函数值的大小论证则常以构造函数,即利用作差法,转化为论证恒成立问题.【典例指引】例1设函数.(1)若当时,函数的图象恒在直线上方,求实数的取值范围;(2)求证: .【思路引导】(1)将问题转化为不等式在上恒成立,求实数的取值范围的问题。可构造函数,经分类讨论得到恒成立时的取值范围即可。(2)先证明对于任意的正整数,不等式恒成立,即恒成立,也即恒成立,结合(1)的结论,当, 时在上成立,然后令可得成立,再令即可得不等式成立。当时,有,于是在上单调递减,从而,因此在上单调递减,所以,不合题意

2、;当时,令,则当时, ,于是在上单调递减,从而,因此在上单调递减,所以,而且仅有,不合题意.综上所求实数的取值范围是.学*(2)对要证明的不等式等价变形如下:对于任意的正整数,不等式恒成立,即恒成立,变形为恒成立,在(1)中,令, ,则得在上单调递减,所以,即,来源:Z&X&X&K令,则得成立.当时,可得.即,所以成立。学*点睛:本题难度较大,解题中连续用到了分类讨论、构造的方法。在(1)中将问题转化为不等式恒成立的问题处理,在解题中需要在对参数m分类讨论的基础上再求其值。(2)中的问题更是考查学生的观察分析问题的能力,在得到需要证明不等式成立的基础上仍需作出相应的变形,并利用上一问的结论来解

3、决,所以需要学生具有较强的想象力。例2已知函数,(为常数,其中是自然对数的底数)(1)讨论函数的单调性;(2)证明:当且时,函数的图象恒在的图象上方【思路引导】(1)求出函数的导数,利用导数判断的单调性,并求出单调区间;(2)构造函数,利用导数证明在上为增函数,且求得得答案.点睛:本题考查函数导数的综合应用问题,考查数学转化思想方法与分类讨论思想思想方法,是中档题;利用导数求解函数单调性的一般步骤:(1)确定的定义域;(2)计算导数;(3)求出的根;(4)用的根将的定义域分成若干个区间,列表考察这若干个区间内的符号,进而确定的单调区间:,则在对应区间上是增函数,对应区间为增区间;,则在对应区间

4、上是减函数,对应区间为减区间.例3已知函数,为其导函数.(1) 设,求函数的单调区间;(2) 若, 设,为函数图象上不同的两点,且满足,设线段中点的横坐标为 证明:.来源:Z*xx*k.Com【思路引导】(1)求出函数的导数,通过讨论的范围,得增区间,得减区间即可;(2)问题转化为证明令 来源:Zxxk.Com,根据函数单调性证明即可. (2) 法一:,故在定义域上单调递增.只需证:,即证 (*)学*注意到 不妨设. 令,则 ,从而在上单减,故, 即得(*)式. 取,则显然有, 从而,另外由三次函数的中心对称性可知,则有 .学*【方法点睛】本题主要考查利用导数研究函数的单调性、分类讨论思想及不

5、等式证明问题.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.【新题展示】1【2019河南周口期末调研】已知函数.(1)求函数的单调区间;(2)若对任意,函数的图像不在轴上方,求的取值范围.【思路引导】(1)对函数求导,分当时和当时,讨论导函数的正负,进而得到单调区间;(2)原式子等价于对任意,都有恒成立,即在上,按照第一问分的情

6、况,继续讨论导函数的正负得到原函数的单调性,进而得到函数的最值,得到结果.【解析】(2)对任意,函数的图像不在轴上方,等价于对任意,都有恒成立,即在上.由(1)知,当时,在上是增函数,又,不合题意;当时,在处取得极大值也是最大值,所以.令,所以.在上,是减函数.又,所以要使得,须,即.故的取值范围为.2【2019北京东城区高三期末】已知函数f(x)=axex-x2-2x(1)当a=1时,求曲线y=f(x)在点(0,f(0)处的切线方程;(2)当x0时,若曲线y=f(x)在直线y=-x的上方,求实数a的取值范围【思路引导】(1)根据题意,求出函数的导数,由导数的几何意义可得切线的斜率,求出切点的

7、坐标,由直线的点斜式方程分析可得答案;(2)根据题意,原问题可以转化为恒成立,设,求出的导数,由函数的导数与函数单调性的关系分析可得其最大值,分析可得答案【解析】设,则,又由,则,则函数在区间上递减,又由,则有,若恒成立,必有,即的取值范围为3【2019山东济南外国语学校1月段模】已知函数(1)当时,求的单调区间;(2)当时,的图象恒在的图象上方,求a的取值范围.【思路引导】(1)首先求出f(x)导数,分类讨论a来判断函数单调性;(2)利用转化思想 yf(x)的图象恒在yax3+x2(a1)x的图象上方,即xexaxax3+x2(a1)x对x(0,+)恒成立;即 exax2x10对x(0,+)

8、恒成立,利用函数的单调性和最值即可得到a的范围.来源:Z+xx+k.Com【解析】(ii) 当a1时,lna0,f(x)xexaxx(ex1)0恒成立,f(x)在(,+)上单调递增,无减区间; 综上,当a0时,f(x)的单调增区间是(0,+),单调减区间是(,0);当0a1时,f(x)的单调增区间是(,lna)和(0,+),单调减区间是(lna,0);当a1时,f(x)的单调增区间是(,+),无减区间(2)由(I)知f(x)xexax当x(0,+)时,yf(x)的图象恒在yax3+x2(a1)x的图象上方;即xexaxax3+x2(a1)x对x(0,+)恒成立;即 exax2x10对x(0,+

9、)恒成立; 记 g(x)exax2x1(x0),g(x)ex2ax1h(x);h(x)ex2a;(i) 当时,h(x)ex2a0恒成立,g(x)在(0,+)上单调递增,g(x)g(0)0;g(x)在(0,+)上单调递增;g(x)g(0)0,符合题意; 【同步训练】1已知函数.(1)当时,讨论的单调性;(2)当时,若,证明:当时, 的图象恒在的图象上方;(3)证明: .【思路引导】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)时,设,求出函数的导数,利用导数性质推导出恒成立,由此能证明的图象恒在图象的上方;(3)由,设,求出函数的导数,从而,令,得,从而证明结论成立即

10、可. 点睛:本题考查导数知识的运用,考查函数的单调性,由,得函数单调递增, 得函数单调递减;考查将问题转化为恒成立问题,正确分离参数是关键,也是常用的一种手段通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解,此题最大的难点在于构造法证明不等式.2已知函数.(1)求函数的图象在处的切线方程;(2)若函数在上有两个不同的零点,求实数的取值范围;(3)是否存在实数,使得对任意的,都有函数的图象在的图象的下方?若存在,请求出最大整数的值;若不存在,请说理由.(参考数据: , ).【思路引导】(1)求函数的导数,利用导数的几何意义进行求解;(2)利用参数分离法,转化为两个函数有

11、两个不同的交点即可;(3)的图象在的图象的下方,等价为对任意的, 恒成立,利用参数分离法,结合函数的单调性和导数之间的关系进行期间即可.(3)假设存在实数满足题意,则不等式对恒成立. 学*即对恒成立.令,则, 令,则,因为在上单调递增, , ,且的图象在上不间断,所以存在,使得,即,则,所以当时, 单调递减;当时, 单调递增,则取到最小值 ,14分所以,即在区间内单调递增.所以,所以存在实数满足题意,且最大整数的值为.学*3已知函数 (1)当a=1时,x01,e使不等式f(x0)m,求实数m的取值范围;(2)若在区间(1,+)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围【

12、思路引导】(I)将a的值代入f(x),求出f(x)的导函数;,将x01,e使不等式f(x0)m转化为f(x)的最小值小于等于m,利用1,e上的函数递增,求出f(x)的最小值,令最小值小于等于m即可(II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行讨论,求出新函数的最值,求出a的范围 点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.4已知函数(1)求函数的单调区间;(2)若在上存在一点,使得成立

13、,求的取值范围【思路引导】(1)先求函数导数,并因式分解,安装导函数是否变号进行分类讨论:当时,导函数不变号,在定义区间上单调递增;当时,导函数由负变正,单调性先减后增(2)构造差函数,结合(1)讨论单调性,确定对应最小值,解出对应的取值范围(2)由题意可知,在上存在一点,使得成立,即在上存在一点,使得,即函数在上的最小值由(1)知,当,即时, 在上单调递减, , ;当,即时, 在上单调递增, , ;当,即时, , , ,此时不存在使成立,学*综上可得的取值范围是或点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出

14、参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.5已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求的取值范围;(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.【思路引导】()当时,求出切点坐标,然后求出,从而求出的值即为切线的斜率,利用点斜式可求出切线方程;()先求导函数,要使在定义域(0,+)内是增函数,只需在(0,+)内恒成立,然后将分离,利用基本不等式可求出的取值范围;(III)根据g(x)在1,e上的单调性求出其值域,然后根据(II)可求出的最大值,要使在1,e上至少存在一点x0,使得成立,只需,x

15、1,e,然后建立不等式,解之即可求出的取值范围解得a 实数a的取值范围是,+)学*点睛:不等式的存在问题即为不等式的有解问题,常用的方法有两个:一是,分离变量法,将变量和参数移到不等式的两边,要就函数的图像,找参数范围即可;二是,含参讨论法,此法是一般方法,也是高考的热点问题,需要求导,讨论参数的范围,结合单调性处理.6已知函数(1)若在区间上单调递增,求实数的取值范围;(2)若存在唯一整数,使得成立,求实数的取值范围【思路引导】(1)本问考查利用导数研究函数单调性,由函数在区间上单调递增,则在上恒成立,即在上恒成立,采用参变分离的方法,将问题转化为在上恒成立,设函数,于是只需满足即可,问题转

16、化为求函数的最小值;(2)存在唯一整数,使得,即,于是问题转化为存在唯一一个整数 使得函数图像在直线下方,于是可以画出两个函数图像,结合图像进行分析,确定函数在时图像之间的关系,通过比较斜率大小来确定的取值范围.实数的取值范围是.点睛:导数是高考中的高频考点,同时也是初等数学与高等数学的重要衔接.利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容,使函数内容更加丰富,更加充盈.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“恒成立”问题和“有解”问题的等价转化,可以简化解题过程.还有在求参数取值范围时,可以考

17、虑到分离参数方法或分类讨论的方法,同时数形结合也是解题时必备的工具.7已知函数()若函数在处的切线平行于直线,求实数a的值;()判断函数在区间上零点的个数;()在()的条件下,若在上存在一点,使得成立,求实数的取值范围【思路引导】(1)利用导数的几何意义,得, ;(2)函数的零点个数等价于两个函数的交点的个数,即与的交点个数;(3)不等式能成立问题转化为函数的最值问题.()在上存在一点,使得成立等价于函数在上的最小值小于零., 来源:当时,即时, 在上单调递减,所以的最小值为,由可得,; 当时,即时, 在上单调递增,所以的最小值为,由可得; 当时,即时,可得的最小值为此时, 不成立. 来源:Z

18、*X*X*K综上所述:可得所求的范围是或8已知函数.(1)若,求函数的极小值;(2)设函数,求函数的单调区间;(3)若在区间上存在一点,使得成立,求的取值范围,( )【思路引导】(1)求出的导函数,研究单调性,即可得到函数的极小值;(2)对参数a分类讨论,明确函数的单调区间;(3)原问题等价于在区间上存在一点,使得,即求函数的最小值即可.【思路点睛】导数为零的点不一定是极值点,导函数的变号零点才是函数的极值点;求单调区间时一定要注意函数的定义域;求最值时需要把极值和端点值逐一求出,比较即可来源:Z*xx*k.Com对于有关恒成立、存在性问题,一直是高考命题的热点,往往以全称命题或特称命题的形式

19、出现,同时结合函数的单调性、极值、最值等知识进行考查,在高考中多以压轴题或压轴题中的压轴问的形式出现,常用分离参数构造函数法求解.9已知函数(1)求函数的单调区间;(2)设当时,求实数的取值范围【思路引导】(1)由,分类讨论即可求解函数的单调区间;(2)设,求得,设, 则则分和两种情况讨论,得到函数的单调性,进而求解实数的取值范围.(2)设则设, 则当时,即时,对一切, 所以在区间上单调递增,所以,即,所以在区间上单调递增,所以,符合题意当时,即时,存在,使得,当时, 所以在区间上单调递减,所以当时, ,即,所以在区间上单调递减故当时,有,与题意矛盾,舍去来源:Z,xx,k.Com综上可知,实

20、数的取值范围为10已知函数.(1)当时,求曲线在处的切线方程;(2)设函数,求函数的单调区间;来源:ZXXK(3)若,在上存在一点,使得成立,求的取值范围.【思路引导】(1)中求的是在x=1的切线方程,所以直接出函数在x=1的导数,和切点即可解决。(2)求单调性区间,先注意定义域,再求导数等于0的根,一般对于含参的问题,我们先看是否能因式分解。(3)存在成立,先变形为,从而构造函数在上的最小值.同时注意第(2)问己求对本问的应用。(3)由题意可知,在上存在一点,使得成立,即在上存在一点,使得,即函数在上的最小值.由第(2)问,当,即时, 在上单调递减,所以,所以,因为,所以;当,即时, 在上单

21、调递增,所以,所以;当,即时, ,因为,所以,所以,此时不存在使得成立.11已知函数f(x)=lnx,h(x)=ax(a为实数).(1)函数f(x)的图象与h(x)的图象没有公共点,求实数a的取值范围;(2)是否存在实数m,使得对任意的都有函数的图象在函数图象的下方?若存在,请求出整数m的最大值;若不存在,说明理由()【思路引导】()函数与无公共点转化为方程在无解,令,得出是唯一的极大值点,进而得到,即可求解实数取值范围;()由不等式对恒成立,即对恒成立, 令,则,再令,转化为利用导数得到函数的单调性和极值,即可得出结论. 当且仅当故实数的取值范围为 则取到最小值 ,来源:Z#X#X#K ,即在区间内单调递增 , 存在实数满足题意,且最大整数的值为.25

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 试题汇编