2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(含答案解析)

上传人:可** 文档编号:61824 上传时间:2019-05-08 格式:DOC 页数:19 大小:349.50KB
下载 相关 举报
2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(含答案解析)_第1页
第1页 / 共19页
2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(含答案解析)_第2页
第2页 / 共19页
2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(含答案解析)_第3页
第3页 / 共19页
2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(含答案解析)_第4页
第4页 / 共19页
2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(含答案解析)_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、2019 年浙江省温州市洞头区灵昆中学中考数学二模试卷一选择题(共 10 小题,满分 40 分,每小题 4 分)110+3 的结果是( )A7 B7 C13 D132在一次体育测试中,10 名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48则这 10 名女生仰卧起坐个数不少于 50 个的频率为( )A0.3 B0.4 C0.5 D0.63如图,几何体的左视图是( )A BC D4在下列网格中,小正方形的边长为 1,点 A、B、O 都在格点上,则A 的正弦值是( )A B C D5化简 的结果是( )A B C D6关于 x 的一元二次方程 ax2+3x20

2、 有两个不相等的实数根,则 a 的值可以是( )A0 B1 C2 D37将不等式组 的解集在数轴上表示出来,应是( )A BC D8已知三角形的三边长分别为 2、x、10,若 x 为正整数,则这样的三角形个数为( )A1 B2 C3 D49如图,在平面直角坐标系中,点 A 在一次函数 y x(x0)的图象上,点 B 在 x 轴的正半轴上,以 AB 为边作矩形 ABCD,AB6,AD2则线段 OD 的最大长度( )A4+2 B5+ C4+2 D2+10关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是( )A对角线互相平分 B对角线互相垂C对角线相等 D对角线平分一组对角二填空题(共

3、 6 小题,满分 30 分,每小题 5 分)11分解因式:2x 22 12已知关于 x,y 的二元一次方程组 的解满足 xy3,则 m 的值为 13如图,从一个直径为 1m 的圆形铁片中剪出一个圆心角为 90的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为 m 14一个正多边形的内角和与外角和的比是 4:1,则它的边数是 15把一个长方形纸片按如图所示折叠,若量得AOD 36,则D OE 的度数为 16如图,正方形 ABOD 的边长为 4,OB 在 x 轴上,OD 在 y 轴上,点 A 在第二象限内,且ADOB,ABOD,点 C 为 AB 的中点,直线 CD 交 x 轴于点 F,过点 C

4、 作 CEDF 于点 C,交 x 轴于点 E,则点 E 坐标为 ,点 P 是直线 CE 上的一个动点,当点 P 的坐标为 时,PB +PF 有最小值三解答题(共 8 小题,满分 80 分)17(8 分)(1)计算: ;(2)化简:(a+2) 2a(a1)18(8 分)如图:AB 是半圆的直径,ABC 的平分线交半圆于 D,AD 和 BC 的延长线交于圆外一点 E,连结 CD(1)求证:EDC 是等腰三角形(2)若 AB5,BC3,求四边形 ABCD 的面积19(8 分)在每个小正方形的边长为 1 的网格图形中,每个小正方形的顶点称为格点如图,55 正方形方格纸中,点 A、B 都在格点处(1)请

5、在图中作等腰ABC,使其底边 AC ,且点 C 为格点;(2)在(1)的条件下,作出平行四边形 ABDC,且 D 为格点,并直接写出平行四边形 ABDC的面积20(8 分)一个不透明的布袋里装有 16 个只有颜色不同的球,其中红球有 x 个,白球有 2x 个,其他均为黄球,现甲同学从布袋中随机摸出 1 个球,若是红球,则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出 1 个球,若为黄球,则乙同学获胜(1)当 x3 时,谁获胜的可能性大?(2)当 x 为何值时,游戏对双方是公平的?21(10 分)如图,一次函数 ykx+b 与反比例函数 y (x0)的图象相交于点 A、点 B,与X 轴

6、交于点 C,其中点 A( 1,3)和点 B(3,n)(1)填空:m ,n (2)求一次函数的解析式和AOB 的面积(3)根据图象回答:当 x 为何值时,kx+b (请直接写出答案) 22(12 分)某市居民用电电费目前实行梯度价格表)月用电(单位:千瓦时 统计为整数) 单价(单位:元)180 及以内 0.5181400(含 181,400) 0.6401 及以上 0.8(1)若月用电 150 千瓦时,应交电费 元,若月用电 250 千瓦时,应交电费 元;(2)若居民王大爷家 12 月应交电费 150 元,请计算他们家 12 月的用电量;(3)若居民李大爷家 11、12 月份共用电 480 千瓦

7、时(其中 11 月份用电量少于 12 月份),共交电费 262.6 元请直接写出李大爷家这两个月的用电量23(12 分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于 A(1,0),B(4,0),C(0,4)三点,点 P 是直线 BC 下方抛物线上一动点(1)求这个二次函数的解析式;(2)动点 P 运动到什么位置时,PBC 面积最大,求出此时 P 点坐标和PBC 的最大面积24(14 分)如图,四边形 ABCD 的顶点在O 上,BD 是O 的直径,延长 CD、BA 交于点 E,连接 AC、BD 交于点 F,作 AHCE,垂足为点 H,已知 ADE ACB (1)求证:AH 是O 的切线;(

8、2)若 OB4,AC6,求 sinACB 的值;(3)若 ,求证:CD DH2019 年浙江省温州市洞头区灵昆中学中考数学二模试卷参考答案与试题解析一选择题(共 10 小题,满分 40 分,每小题 4 分)1【分析】根据有理数的加法法则,即可解答【解答】解:10+3(103)7,故选:A【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则2【分析】用仰卧起坐个数不少于 50 个的频数除以女生总人数 10 计算即可得解【解答】解:仰卧起坐个数不少于 50 个的有 52、50、50、61、72 共 5 个,所以,频率 0.5故选:C【点评】本题考查了频数与频率,频率 3【分析】找到

9、从几何体左面看得到的平面图形即可【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左故选:A【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键4【分析】根据勾股定理求出 OA,根据正弦的定义解答即可【解答】解:由题意得,OC2,AC 4,由勾股定理得,AO 2 ,sinA ,故选:A【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边5【分析】根据分式的运算法则即可求出答案【解答】解:原式 故选:D【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型

10、6【分析】由方程根的情况,根据根的判别式可得到关于 a 的不等式,可求得 a 的取值范围,则可求得答案【解答】解:关于 x 的一元二次方程 ax2+3x20 有两个不相等的实数根,0 且 a0,即 324a(2)0 且 a0,解得 a1 且 a0,故选:B【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键7【分析】根据一元一次不等式组的解法解出不等式组,根据小于等于或大于等于用实心圆点在数轴上表示解答【解答】解:不等式组 的解集为:1x3,故选:A【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区

11、别8【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出 x 的取值范围,然后根据若 x 为正整数,即可选择答案【解答】解:1028,10+212,8x12,若 x 为正整数,x 的可能取值是 9,10,11,故这样的三角形共有 3 个故选:C【点评】本题考查了三角形的三边关系,熟练掌握“三角形任意两边之和大于第三边,任意两边之差小于第三边”求出 x 的取值范围是解题的关键9【分析】由直线的斜率得出 tanAOB ,作AOB 的外接圆P,连接 OP、PA、PB、PD ,作 PG CD,交 AB 于 H,垂足为 G,易得APHAOB,解直角三角形求得 PH2,然后根据广告代理渠

12、道 PD、PA ,根据三角形三边关系得出 OD 取最大值时,ODOP +PD,据此即可求得【解答】解:点 A 在一次函数 y x(x 0)的图象上,tanAOB ,作AOB 的外接圆P,连接 OP、PA、PB 、PD ,作 PGCD,交 AB 于 H,垂足为 G,四边形 ABCD 是矩形,ABCD,四边形 AHGD 是矩形,PGAB,GHAD2,APB 2AOB,APG APB,AH AB3 DG,APHAOB,tanAPHtanAOB , ,PH2,PG2+2 4,PD 5,OPPA ,在OPD 中, OP+PDOD,OD 的最大值为 5+ ,故选:B【点评】本题考查了一次函数图象上点的坐标

13、特征,圆心角和圆周角的关系,垂径定理以及勾股定理的应用,三角形三边关系等,作出辅助线是解题的关键10【分析】根据矩形、平行四边形的性质即可判断;【解答】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,矩形具备而平行四边形不一定具备的是矩形的对角线相等,故选:C【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质如,矩形的对角线相等是常考内容二填空题(共 6 小题,满分 30 分,每小题 5 分)11【分析】先提取公因式 2,再根据平方差公式进行二次分解即可求得答案【解答】解:2x 222(x 21)2(x +1)(x

14、1)故答案为:2(x+1)(x 1)【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底12【分析】 得到 xy4m,代入 xy3 中计算即可求出 m 的值【解答】解: ,得:xy4m,xy3,4m3,解得:m1,故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法13【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以 2即为圆锥的底面半径【解答】解:易得扇形的圆心角所对的弦是直径,扇形的半径为: m,扇形的弧长为: m,圆锥的底面半径为: 2 m【点评】本题用到的知识点为:90 度

15、的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长14【分析】多边形的外角和是 360 度,内角和与外角和的比是 4:1,则内角和是 1440 度n 边形的内角和是(n2)180,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数【解答】解:根据题意,得(n2)1801440,解得:n10则此多边形的边数是 10故答案为:10【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n2)180,外角和为 36015【分析】由翻折变换的性质可知D OE DOE,故AOD+2DOE 180,求出DOE 的度数即可【解答】解:四边形 ODCE 折

16、叠后形成四边形 ODC E ,DOEDOE ,AOD +2DOE180,AOD 36 ,DOE72故答案为:72【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等16【分析】由条件可求得 B 点坐标,可求得 BFBC 的长,利用BCFBEC 可求得 BE 的长,则可求得 OE 的长,可求得 E 点坐标;易知可知点 D 与 F 关于直线 CE 对称,连接 BD 交直线CE 于点 P,则可知 P 点即为满足条件的动点,求出直线 EC、直线 BD 的解析式构建方程组确定点 P 坐标即可;【解答】解:C 是 AB 的中点,

17、ACBC,四边形 ABOD 是正方形,ACBF90,在ACD 和BCF 中,ACDBCF(ASA),CFCD,BFAD4CEDF,CE 垂直平分 DF,D、F 关于直线 CE 对称,CBFCBEFCE 90,CFB+ FCBFCB+ECB90,CFBBCE,BCFBEC, ,即 ,解得 BE1,OEOB BE413,E 点坐标为(3,0);如图,连接 BD 交直线 CE 于点 P,点 D 与点 F 关于直线 CE 对称,PDPF,PB+PFPB+ PDBD,此时 PF+PE 的值最小,直线 CE 的解析式为 y2x6,直线 BD 的解析式为 yx +4,由 ,解得 ,P( , )故答案为(3,

18、0),( , )【点评】本题为一次函数的综合应用,正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轴对称的性质等知识三解答题(共 8 小题,满分 80 分)17【分析】(1)直接利用绝对值的性质以及二次根式的性质、零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式分别化简得出答案【解答】解:(1)原式2 1( 1) ;(2)原式a 2+4a+4a 2+a5a+4【点评】此题主要考查了完全平方公式以及单项式乘以多项式、实数运算,正确掌握相关运算法则是解题关键18【分析】(1)根据圆周角定理由 AB 是半圆的直径得ADBACB90,加上ABC 的平分线交半

19、圆于 D,根据等腰三角形的判定得 BABE,再根据等腰三角形的性质得 ADED,即可得到 CD 为直角三角形 ACE 斜边上的中线,所以 CD DEAD,因此可判断EDC 是等腰三角形;(2)先利用 BABE 5 得到 CEEBCB2,利用勾股定理,在 RtACE 中计算出 AE2,在 RtABC 中计算出 AC4,利用三角形面积公式得到 SABE ACBE10,再证明ECDEAB ,利用相似的性质求出 SECD 2,然后利用四边形 ABCD 的面积S ABE S ECD 进行计算【解答】(1)证明:AB 是半圆的直径,ADBACB90,ABC 的平分线交半圆于 D,BABE,ADED ,CD

20、 为直角三角形 ACE 斜边上的中线,CDDEAD,EDC 是等腰三角形;(2)解:BABE 5,CEEBCB2,在 Rt ACE 中,AE 2 ,在 Rt ABC 中,AC 4,S ABE ACBE 4510,EDCEBA,而DECBEA,ECDEAB, ( ) 2,即 SECD 10( ) 22,四边形 ABCD 的面积S ABE S ECD 1028【点评】本题考查了圆周角定理:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径也考查了等腰三角形的判定与性质和相似三角形的判定与性质19【

21、分析】(1)利用数形结合的思想解决问题即可(2)利用数形结合的思想解决问题,根据平行四边形的面积公式计算即可【解答】解:(1)如图,ABC 即为所求(2)如图,平行四边形 ABDC 即为所求S 平行四边形 ABCD2 2 8【点评】本题考查作图应用与设计,等腰三角形的判定和性质,平行四边形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型20【分析】(1)比较 A、B 两位同学的概率解答即可;(2)根据游戏的公平性,列出方程 解答即可【解答】解:(1)A 同学获胜可能性为 ,B 同学获胜可能性为 ,因为 ,当 x3 时,B 同学获胜可能性大;(2)游戏对双方公

22、平必须有: ,解得:x4,答:当 x4 时,游戏对双方是公平的【点评】此题考查游戏的公平性问题,关键是根据 A、B 两位同学的概率解答21【分析】(1)将 A 点坐标,B 点坐标代入解析式可求 m,n 的值(2)用待定系数法可求一次函数解析式,根据 SAOB S AOC SBOC 可求AOB 的面积(3)由图象直接可得【解答】解:(1)反比例函数 y 过点 A(1,3),B(3,n)m3(1)3,m3nn1故答案为3,1(2)设一次函数解析式 ykx+b,且过(1,3),B( 3,1)解得:解析式 yx+4一次函数图象与 x 轴交点为 C0x+4x4C(4,0)S AOB S AOC SBOC

23、S AOB 43 414(3)kx+b一次函数图象在反比例函数图象上方3x1故答案为3x1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键22【分析】(1)根据表格中电费收取方法计算即可得到结果;(2)根据题意确定出他们家 12 月的用电量范围,设为 x 度,由表格中的电费收取方式列出方程,求出方程的解即可得到结果;(3)设 12 月用电 y 度,则 11 月用电(480y)度,根据 11 月份用电量少于 12 月份,得出y240,分类讨论 y 的范围确定出 x 的值即可【解答】解:(1)根据题意得:0.515075,1800.5

24、+0.6(250180)132;故答案为:75;132;(2)设 12 月用电量为 x 度,由题意,当用电量为 400 度时,电费 222 元;当用电量为 180 度时,电费 90 元;181x400,1800.5+(x180)0.6150,解得:x280,即用电 280 度;(3)设 12 月用电 y 度,则 11 月用电(480y)度,由题意,y240,当 y400 时,11 月用电在 180 度内,(480y)0.5+1800.5+(400180)0.6+(x400)0.8262.6,解得:x402,则 11 月用电 78 度,12 月用电 402 度;当 300y400 时,11 月用

25、电在 180 度内,12 月用电在 181400 度,(480y)0.5+1800.5+(y180)0.6,解得:y406400,舍去;当 240y300 时,两个月用电量都在 181400 度,1800.5+(y180)0.6+1800.5+(480y180)0.6262.6,方程无解,综上,11 月用电 78 度,12 月用电 402 度【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键23【分析】(1)由 A、B、C 三点的坐标,利用待定系数法可求得抛物线解析式;(2)过 P 作 PEx 轴,交 x 轴于点 E,交直线 BC 于点 F,用 P 点坐标可表示出 PF 的长,则可表

26、示出PBC 的面积,利用二次函数的性质可求得PBC 面积的最大值及 P 点的坐标【解答】解:(1)设抛物线解析式为 yax 2+bx+c,把 A、B、C 三点坐标代入可得 ,解得: ,抛物线解析式为 yx 23x4;(2)点 P 在抛物线上,可设 P(t,t 23t4),过 P 作 PEx 轴于点 E,交直线 BC 于点 F,如图 1,B(4,0),C(0,4)直线 BC 解析式为 yx4,F(t,t4),PF(t4) (t 23t 4)t 2+4t,S PBC S PFC +SPFB ,当 t2 时,S PBC 最大值为 8,此时 t23t46,当 P 点坐标为(2,6)时,PBC 的最大面

27、积为 8【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识在(1)中注意待定系数法的应用,在(2)中用 P 点坐标表示出PBC 的面积是解题的关键24【分析】(1)连接 OA,证明 DABDAE,得到 ABAE,得到 OA 是BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明CDFAOF,根据相似三角形的性质得到 CD CE,根据等腰三角形的性质证明【解答】(1)证明:连接 OA,由圆周角定理得,ACBADB,ADEACB,ADEADB,BD 是直径,DABDAE90,在DAB 和DAE 中,DABDAE,ABAE,又OBOD,OADE ,又AH DE,OAAH ,AH 是 O 的切线;(2)解:由(1)知,EDBE,DBE ACD,EACD,AEACAB6在 Rt ABD 中,AB 6,BD 8,ADE ACB ,sinADB ,即 sinACB ;(3)证明:由(2)知,OA 是BDE 的中位线,OADE ,OA DECDFAOF, ,CD OA DE,即 CD CE,ACAE,AHCE,CHHE CE,CD CH,CDDH【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 第二次模拟