广东省惠州市2018-2019学年九年级(上)第二次月考数学试卷(含答案)

上传人:好样****8 文档编号:45185 上传时间:2019-02-02 格式:DOC 页数:13 大小:197KB
下载 相关 举报
广东省惠州市2018-2019学年九年级(上)第二次月考数学试卷(含答案)_第1页
第1页 / 共13页
广东省惠州市2018-2019学年九年级(上)第二次月考数学试卷(含答案)_第2页
第2页 / 共13页
广东省惠州市2018-2019学年九年级(上)第二次月考数学试卷(含答案)_第3页
第3页 / 共13页
广东省惠州市2018-2019学年九年级(上)第二次月考数学试卷(含答案)_第4页
第4页 / 共13页
广东省惠州市2018-2019学年九年级(上)第二次月考数学试卷(含答案)_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、广东省惠州市 2018-2019 学年九年级(上)第二次月考数学试卷一选择题(满分 30 分,每小题 3 分)1方程( a2) x2+ax+b0 是关于 x 的一元二次方程,则 a 的取值范围是( )A a0 B a2 C a2 D a02下列关于 x 的方程中一定没有实数根的是( )A x2 x10 B4 x26 x+90 C x2 x D x2 mx203在平面直角坐标系中,抛物线 y2与直线 y1均过原点,直线经过抛物线的顶点(2,4) ,则下列说法:当 0 x2 时, y2 y1; y2随 x 的增大而增大的取值范围是 x2;使得 y2大于 4 的 x 值不存在;若 y22,则 x2

2、或 x1其中正确的有( )A1 个 B2 个 C3 个 D4 个4已知关于 x 的一元二次方程 3x2+4x50,下列说法正确的是( )A方程有两个相等的实数根B方程有两个不相等的实数根C没有实数根D无法确定5已知当 x0 时,反比例函数 y 的函数值随自变量的增大而减小,此时关于 x 的方程 x22( k+1) x+k210 的根的情况为( )A有两个相等的实数根 B没有实数根C有两个不相等的实数根 D无法确定6在一次酒会上,每两人都只碰一次杯,如果一共碰杯 55 次,则参加酒会的人数为( )A9 人 B10 人 C11 人 D12 人7已知实数 x1, x2满足 x1+x27, x1x21

3、2,则以 x1, x2为根的一元二次方程是( )A x27 x+120 B x27 x120 C x2+7x120 D x2+7x+1208二次数 y x2+6x+1 图象的对称轴是( )A x6 B x6 C x 3 D x49抛物线 y x24 x+1 与 y 轴交点的坐标是( )A (0,1) B (1, O) C (0,3) D (0,2)10在同一平面直角坐标系中,函数 y ax2+bx 与 y bx+a 的图象可能是( )A BC D二填空题(满分 24 分,每小题 4 分)11方程 x22 x 的根为 12方程( x+5) ( x7)26,化成一般形式是 ,其二次项的系数和一次项

4、系数的和是 13抛物线 y x23 x+2 与 x 轴交于点 A、 B,则 AB 14把抛物线 y2 x2向左平移 3 个单位,再向下平移 2 个单位,所得抛物线的解析式为 15若关于 x 的二次函数 y ax2+a2的最小值为 4,则 a 的值为 16二次函数 y ax2+bx+c( a、 b、 c 是常数,且 a0)的图象如图所示,则 a+b+2c (填“” 、 “”或“” )0三解答题(满分 18 分,每小题 6 分)17 (6 分)解下 列一元二次方程(1) x26 x40(2) x( x7)5 x3618 (6 分)已知二次函数 y ax2+bx+c 中,函数 y 与自变量 x 的部

5、分对应值如下表:x 1 0 1 2 4 y 10 1 2 1 25 (1)求这个二次函数的解析式;(2)写出这个二次函数图象的顶点坐标19 (6 分)已知关于 x 的方程 2x2+kx+1 k0,若方程的一个根是1,求另一个根及 k的值四解答题(共 3 小题,满分 21 分,每小题 7 分)20 (7 分)如图所示,在宽为 16m,长为 20m 的矩形耕地上,修筑同样宽的两条道路(互相垂直) ,把耕地分成大小不等的四块试验田,要使试验田的面积为 285m2,道路应为多宽?21 (7 分)已知关于 x 的一元二次方程 x2(2 m2) x+( m2 2m)0(1)求证:方程有两个不相等的实数根(

6、2)如果方程的两实数根为 x1, x2,且 x12+x2210,求 m 的值22 (7 分)如图,已知二次函数 y ax2+bx+c 的图象过 A(2,0) , D(1,0)和C(4,5)三点(1)求二次函数的解析式;(2)在同一坐标系中画出直线 y x+1,并写出当 x 在什么范围内时,一次函数的值大于二次函数的值五解答题(共 3 小题,满分 27 分,每小题 9 分)23 (9 分)如图,某校广场有一段 25 米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块 100 平方米的长方形草坪(如图 CD EF, CD CF)已知整修旧围栏的价格是每米 1.75 元,建新围栏的价格

7、是 4.5 元若 CF x 米,计划修建费为 y元(1)求 y 与 x 的函数关系式,并指出 x 的取值范围;(2)若计划修建费为 150 元,能否完成该草坪围栏的修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由24 (9 分)已知关于 x 的一元二次方程( a+b) x2+2cx+( b a)0,其中 a、 b、 c 分别为 ABC 三边的长(1)如果 x1 是方程的根,试判断 ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断 ABC 的形状,并说明理由;(3)如果 ABC 是等边三角形,试求这个一元二次方程的根25 (9 分)已知一元二次方程 x24

8、x+30 的两根是 m, n 且 m n如图,若抛物线y x2+bx+c 的图象经过点 A( m,0) 、 B(0, n) (1)求抛物线的解析式(2)若(1)中的抛物线与 x 轴的另一个交点为 C根据图象回答,当 x 取何值时,抛物线的图象在直线 BC 的上方?(3)点 P 在线段 OC 上,作 PE x 轴与抛物线交于点 E,若直线 BC 将 CPE 的面积分成相等的两部分,求点 P 的坐标参考答案一选择题1解:依题意得: a20,解得 a2故选: B2解: A、50,方程有两个不相等的实数根;B、1080,方 程没有实数根;C、10,方程有两个相等的实数根;D、 m2+80,方程有两个不

9、相等的实数根故选: B3解:设抛物线解析式为 y a( x2) 2+4,抛物线与直线均过原点, a(02) 2+40, a1, y( x2) 2+4,由图象得当 0 x2 时, y2 y1,故正确;y2随 x 的增大而增大的取值范围是 x2,故正确;抛物线的顶点(2,4) ,使得 y2大于 4 的 x 值不存在,故正确;把 y2 代入 y( x2) 2+4,得若 y22,则 x2 或 x2+ ,故不正确其中正确的有 3 个,故选: C4解:4 243(5)760,方程有两个不相等的实数根故选: B5解:当 x0 时,反比例函数 y 的函数值随自变量的增大而减小, k0, x22( k+1) x

10、+k210,2( k+1) 241( k21)8 k+80,关于 x 的方程 x22( k+1) x+k210 有两个不相等的实数根,故选: C6解:设参加酒会的人数为 x 人,根据题意得: x( x1)55,整理,得: x2 x1100,解得: x111, x210(不合 题意,舍去) 答:参加酒会的人数为 11 人故选: C7解: x1+x27, x1x212,以 x1, x2为根的一元二次方程可为 x27 x12 0故选: B8解: y x2+6x+1( x+3) 28,二次数 y x2+6x+1 图象的对称轴是直线 x3,故选: C9解:当 x0 时, y x24 x+11,抛物线与

11、y 轴的交点坐标为(0,1) ,故选: A10解: A、对于直线 y bx+a 来说,由图象可以判断, a0, b0;而对于抛物线y ax2+bx 来说,对称轴 x 0,在 y 轴的右侧,符合题意,图形正确B、对于直线 y bx+a 来说,由图象可以判断, a0, b0;而对于抛物线 y ax2+bx 来说,图象应开口向下,故不合题意,图形错误C、对于直线 y bx+a 来说,由图象可以判断, a0, b0; 而对于抛物线 y ax2+bx来说,对称轴 0 ,应位于 y 轴的左侧,故不合题意,图形错误,D、对于直线 y bx+a 来说,由图象可以判断, a0, b0;而对于抛物线 y ax2+

12、bx 来说,图象应开口向下,故不合题意,图形错误故选: A二填空题(共 6 小题,满分 24 分,每小题 4 分)11解: x22 x,x22 x0,x( x2)0,x0,或 x20,x10, x22,故答案为: x10, x2212解:由方程( x+5) ( x7)26,得x22 x3526,即 x22 x90; x22 x90 的二次项系数是 1,一次项系数是2,所以其二次项的系数和一次项系数的和是 1+(2)1;故答案为: x22 x90;113解:当 y0 时, x23 x+20,解得 x11, x22,所以抛物线 y x23 x+2 与 x 轴的交点 A、 B 的坐标为(1,0) ,

13、 (2,0) ,所以 AB211故答案为 114解: y2 x2向左平移 3 个单位,再向下平移 2 个单位,所得抛物线的解析式为 y2( x+3) 22;故答案是: y2( x+3) 2215解:关于 x 的二次函数 y ax2+a2的最小值为 4, a24, a0,解得, a2,故答案为:216解:抛物线开口向下, a0抛物线与 y 轴交于 y 轴负半轴, c0对称轴在 y 轴左侧 0 b0 a+b+2c0故答案为:三解答题(共 3 小题,满分 18 分,每小题 6 分)17解:(1) x26 x40,b24 ac(6) 241(4)52,x ,x13+ , x23 ;(2) x( x7)

14、5 x36,整理得: x212 x+360,( x6) 20,开方得: x60,即 x1 x2618解:(1)把(0,1) , (1,2) , (2,1)代入 y ax2+bx+c 得 ,解得,所以抛物线解析式为 y3 x26 x+1;(2) y3( x22 x)+13( x22 x+11)+13( x1) 22,所以抛物线的顶点坐标为(1,2) 19解:关于 x 的方程 2x2+kx+1 k0 的一个根是1,2 k+1 k0,解得 k ,原方程为 2x2+ x 0,解得 x1 或 x ,即方程的另一根为 , k 的值为 四解答题(共 3 小题,满分 21 分,每小题 7 分)20解:设道路为

15、 x 米宽,由题意得:(20 x) (16 x)285,整理得: x236 x+350,解得: x11, x235,经检验是原方程的解,但是 x3520,因此不合题意舍去,故道路为 1m 宽21解:(1)由题意可知:(2 m2) 24( m22 m)40,方程有两个不相等的实数根(2) x1+x22 m2, x1x2 m22 m, + ( x1+x2) 22 x1x210,(2 m2) 22( m22 m)10, m22 m30, m 1 或 m322解:(1)二次函数 y ax2+bx+c 的图象过 A(2,0) , B(0,1)和 C(4,5)三点, , a , b , c1,二次函数的解

16、析式为 y x2 x1;(2)当 y0 时,得 x2 x10;解得 x12, x21,点 D 坐标为(1,0) ;图象如图,当一次函数的值大于二次函数的值时, x 的取值范围是1 x4五解答题(共 3 小题,满分 27 分,每小题 9 分)23解:(1) y1.75 x+4.5( 2+x) ,1.75 x+ +4.5x,6.25 x+ (0 x25) ;(2)当 y150 时,6.25 x+ 150整理得: x224 x+1440解得: x1 x212经检验, x12 是原方程的解,且符合题意答:应利用旧围栏 12 米24解:(1) ABC 是等腰三角形,理由:当 x1 时, ( a+b)2

17、c+( b a)0, b c, ABC 是等腰三角形,(2) ABC 是直角三角形,理由:方程有两个相等的实数根,(2 c) 24( a+b) ( b a)0, a2+c2 b2, ABC 是直角三角形;(3) ABC 是等边三角形, a b c,原方程可化为:2 ax2+2ax0,即: x2+x0, x( x+1)0, x10, x21,即:这个一元二次方程的根为 x10, x2125解:(1) x24 x+30 的两个根为 x11, x23, A 点的坐标为(1,0) , B 点的坐标为(0,3) ,又抛物线 y x2+bx+c 的图象经过点 A(1,0) 、 B(0,3)两点, ,抛物线

18、的解析式为 y x22 x+3,答:抛物线的解析式是 y x22 x+3(2)作直线 BC,由(1)得, y x22 x+3,抛物线 y x22 x+3 与 x 轴的另一个交点为 C,令 x22 x+30,解得: x11, x23, C 点的坐标为(3,0) ,由图可知:当3 x0 时,抛物线的图象在直线 BC 的上方,答:当3 x0 时,抛物线的图象在直线 BC 的上方(3)设直线 BC 交 PE 于 F, P 点坐标为( a,0) ,则 E 点坐标为( a, a22 a+3) ,直线 BC 将 CPE 的面积分成相等的两部分, F 是线段 PE 的中点(根据等底等高的三角形的面积相等) ,即 F 点的坐标是( a, ) ,直线 BC 过点 B(0.3)和 C(3,0) ,设直线 BC 的解析式是 y kx+b ( k0) ,代入得: ,直线 BC 的解析式为 y x+3,点 F 在直线 BC 上,点 F 的坐标满足直线 BC 的解析式,即 a+3解得 a11, a23(此时 P 点与点 C 重合,舍去) , P 点的坐标是(1,0) ,答:点 P 的坐标是(1,0)

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 月考试卷 > 九年级上