2016-2017学年天津市五区县高一(上)期末数学试卷(含答案解析)

上传人:好样****8 文档编号:29287 上传时间:2018-11-15 格式:DOC 页数:12 大小:226KB
下载 相关 举报
2016-2017学年天津市五区县高一(上)期末数学试卷(含答案解析)_第1页
第1页 / 共12页
2016-2017学年天津市五区县高一(上)期末数学试卷(含答案解析)_第2页
第2页 / 共12页
2016-2017学年天津市五区县高一(上)期末数学试卷(含答案解析)_第3页
第3页 / 共12页
2016-2017学年天津市五区县高一(上)期末数学试卷(含答案解析)_第4页
第4页 / 共12页
2016-2017学年天津市五区县高一(上)期末数学试卷(含答案解析)_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、2016-2017 学年天津市五区县高一(上)期末数学试卷一、选择题:本大题共 10 小题,每小题 4 分,共 40 分在每小题给出的四个选项中,只有一个是符合题目要求的1 (4 分)已知幂函数 y=xn 的图象经过点(2,8) ,则此幂函数的解析式是( )Ay=2 x By=3 x Cy=x 3 Dy=x 12 (4 分)已知全集 U=1,2,3,4,5,6,集合 A=1,2 ,4,集合B=3,6,则 U(AB)= ( )A1 ,2 ,4 B1,2,4,5 C2,4 D53 (4 分)在ABC 中,点 M 是 BC 的中点,设 = , = ,则 =( )A + B C + D 4 (4 分)

2、已知 a=20.3,b=log 0.23,c=log 32,则 a,b,c 的大小关系是( )Aa b c Bcba Cb ac Db c a5 (4 分)函数 y=sin(2x+ )的图象可以由函数 y=sin2x 的图象( )得到A向左平移 个单位长度 B向右平移 个单位长度C向左平移 个单位长度 D向右平移 个单位长度6 (4 分)函数 f(x )=xlog x 的零点个数为( )A0 个 B1 个 C2 个 D无数多个7 (4 分)已知 sin(+)= ,则 cos( )的值为( )A B C D8 (4 分)已知ABC 的三个顶点 A、B 、C 及平面内一点 P,若 + + = ,则

3、点 P 与ABC 的位置关系是( )AP 在 AC 边上 BP 在 AB 边上或其延长线上C P 在ABC 外部 DP 在ABC 内部9 (4 分)函数 y=32cos( 2x )的单调递减区间是( )A (k + ,k + ) (k Z) B (k ,k+ ) (kZ )C ( 2k+ ,2k+ ) (k Z) D (2k , 2k+ ) (k Z)10 (4 分)已知偶函数 f(x )在0,+)上是增函数,且 f(1)=0,则满足f(log x) 0 的 x 的取值范围是( )A (0 ,+) B (0, )(2,+) C (0 , ) D (0, )(1,2)二、填空题:本大题共 5 小

4、题,每小题 4 分,共 20 分).11 (4 分)sin210= 12 (4 分)已知 A(2,3) ,B (4,3) ,且 =3 ,则点 P 的坐标为 13 (4 分)函数 f(x )=lg (1 2x)的定义域为 14 (4 分)已知函数 f( x)= (a R) ,若 f(f ( ) )=1,则 a 的值为 15 (4 分)在平行四边形 ABCD 中,AD=1,AB=2,BAD=60,E 是 CD 的中点,则 = 三、解答题:本大题共 5 小题,共 60 分解答写出文字说明、证明过程或演算过程16 (12 分)已知向量 =(1,0) , =(m,1) ,且 与 的夹角为 (1)求| 2

5、 |;(2)若( + )与 垂直,求实数 的值17 (12 分)已知全集 U=R,集合 A=x|12x 1 5,B=y|y= ( )x,x 2(1)求( UA)B;(2)若集合 C=x|a1x a1,且 CA,求实数 a 的取值范围18 (12 分)已知函数 f( x)=2cosx( sinx+cosx)+m, (xR ,mR) (1)求 f(x)的最小正周期;(2)若 f(x)在区间0, 上的最大值是 6,求 f(x)在区间0, 上的最小值19 (12 分)已知 sin= ,且 ( ,) (1)求 tan(+ )的值;(2)若 (0, ) ,且 cos()= ,求 cos 的值20 (12

6、分)已知函数 f( x)= (2 x2x) (a0 ,且 a1) (1)判断函数 f(x)的奇偶性和单调性,并说明理由;(2)当 x(1,1)时,总有 f(m 1)+f(m)0,求实数 m 的取值范围2016-2017 学年天津市五区县高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共 10 小题,每小题 4 分,共 40 分在每小题给出的四个选项中,只有一个是符合题目要求的1 (4 分)已知幂函数 y=xn 的图象经过点(2,8) ,则此幂函数的解析式是( )Ay=2 x By=3 x Cy=x 3 Dy=x 1【解答】解:设幂函数为 f(x )=x ,因为图象经过点(2,8) ,

7、f( 2)=8=2 3,从而 =3 函数的解析式 f(x)=x 3,故选:C2 (4 分)已知全集 U=1,2,3,4,5,6,集合 A=1,2 ,4,集合B=3,6,则 U(AB)= ( )A1 ,2 ,4 B1,2,4,5 C2,4 D5【解答】解:集合 A=1,2,4,集合 B=3,6 ,AB=1,2,3,4,6,则 U(AB) =5,故选:D3 (4 分)在ABC 中,点 M 是 BC 的中点,设 = , = ,则 =( )A + B C + D 【解答】解:如图作平行四边形 ABDC,则有 故选:C4 (4 分)已知 a=20.3,b=log 0.23,c=log 32,则 a,b,

8、c 的大小关系是( )Aa b c Bcba Cb ac Db c a【解答】解:a=2 0.32 0=1,b=log0.23log 0.21=0,0=log31c=log 32log 33=1,a ,b ,c 的大小关系是 bc a故选:D5 (4 分)函数 y=sin(2x+ )的图象可以由函数 y=sin2x 的图象( )得到A向左平移 个单位长度 B向右平移 个单位长度C向左平移 个单位长度 D向右平移 个单位长度【解答】解:把函数 y=sin2x 的图象,向左平移 个单位长度,可得函数y=sin2(x+ )=sin(2x+ )的图象,故选:C6 (4 分)函数 f(x )=xlog

9、x 的零点个数为( )A0 个 B1 个 C2 个 D无数多个【解答】解:函数 f(x) =xlog x 的零点个数,就是函数 y=x 与 y=log x,两个函数的图象的交点个数,如图:可知函数的图象只有一个交点函数 f( x)=x log x 的零点个数为:1 个故选:B7 (4 分)已知 sin(+)= ,则 cos( )的值为( )A B C D【解答】解:由 sin(+)= 得,sin= ,所以 cos( )=cos( )= sin= ,故选 A:8 (4 分)已知ABC 的三个顶点 A、B 、C 及平面内一点 P,若 + + = ,则点 P 与ABC 的位置关系是( )AP 在 A

10、C 边上 BP 在 AB 边上或其延长线上C P 在ABC 外部 DP 在ABC 内部【解答】解: =P 在 AC 的三等分点上故选 A9 (4 分)函数 y=32cos( 2x )的单调递减区间是( )A (k + ,k + ) (k Z) B (k ,k+ ) (kZ )C ( 2k+ ,2k+ ) (k Z) D (2k , 2k+ ) (k Z)【解答】解:函数 y=32cos(2x )的单调递减区间,即函数y=2cos(2x )的单调递增区间,令 2k2x 2k,求得 k x k+ ,可得原函数的减区间为k ,k + ,k Z结合所给的选项,故选:B10 (4 分)已知偶函数 f(x

11、 )在0,+)上是增函数,且 f(1)=0,则满足f(log x) 0 的 x 的取值范围是( )A (0 ,+) B (0, )(2,+) C (0 , ) D (0, )(1,2)【解答】解:f(x)是 R 上的偶函数,且在0,+)上是增函数,又 f(1)=0,不等式 f(log x)0 等价为 f(|log x|)f(1) ,即|log x|1,则 log x1 或 log x1,解得 0x2 或 x ,故选:B二、填空题:本大题共 5 小题,每小题 4 分,共 20 分).11 (4 分)sin210= 【解答】解:sin210=sin(180+30 )= sin30= 故答案为:12

12、 (4 分)已知 A(2,3) ,B (4,3) ,且 =3 ,则点 P 的坐标为 (8,15 ) 【解答】解:设 P(x ,y) ,A(2,3 ) , B(4, 3) ,且 =3 ,(x2,y3)=3(2,6)=(6,18) , ,解得 x=8,y=15,点 P 的坐标为( 8,15) 故答案为:(8,15) 13 (4 分)函数 f(x )=lg (1 2x)的定义域为 ( ,0) 【解答】解:f(x)=lg(12 x)根据对数函数定义得 12x0,解得:x0故答案为:(,0)14 (4 分)已知函数 f( x)= (a R) ,若 f(f ( ) )=1,则 a 的值为 8 【解答】解:

13、函数 f(x) = (a R) ,若 f(f( ) )=1,可得 f( ) = ,f(f( ) )=f( )=1 ,a =1,解得 a=8故答案为:815 (4 分)在平行四边形 ABCD 中,AD=1,AB=2,BAD=60,E 是 CD 的中点,则 = 【解答】解:由题意可得 =21cos60=1, =( ) ( + )=( )( )= + += 4+ 1+1= ,故答案为 三、解答题:本大题共 5 小题,共 60 分解答写出文字说明、证明过程或演算过程16 (12 分)已知向量 =(1,0) , =(m,1) ,且 与 的夹角为 (1)求| 2 |;(2)若( + )与 垂直,求实数 的

14、值【解答】解:(1) =( 1,0) , =(m,1) ,且 与 的夹角为 =m,| |=1,| |= ,cos = = ,解得 m=1,或 m=1(舍) =(1,2) ,| 2 |= = (2) =(1+, ) ,( + )与 垂直, ,解得 17 (12 分)已知全集 U=R,集合 A=x|12x 1 5,B=y|y= ( )x,x 2(1)求( UA)B;(2)若集合 C=x|a1x a1,且 CA,求实数 a 的取值范围【解答】解:(1)由集合 A=x|12x 15= x|1x 3,C UA=x|x1,或 x3B=y|y=( ) x,x2 =y|0y 4(C UA)B=x |0x 1,

15、或 3x4,(2)C=x|a1xa1=x |2a1xa+1,当 2a1a+1 时,即 a2 时,C=,满足 CA,当 a2 时,由题意 ,解得 1a2,综上,实数 a 的取值范围是1,+)18 (12 分)已知函数 f( x)=2cosx( sinx+cosx)+m, (xR ,mR) (1)求 f(x)的最小正周期;(2)若 f(x)在区间0, 上的最大值是 6,求 f(x)在区间0, 上的最小值【解答】解:(1)函数 f(x )=2cosx( sinx+cosx)+m= sin2x+cos2x+1+m=2sin(2x+ )+1+m,故函数 f(x )的最小正周期为 (2)在区间0, 上,2

16、x + , ,故当 2x+ = 时,f(x)取得最大值为 2+1+m=6,m=3故当 2x+ = 时,f(x)取得最小值为1+1+m=319 (12 分)已知 sin= ,且 ( ,) (1)求 tan(+ )的值;(2)若 (0, ) ,且 cos()= ,求 cos 的值【解答】 (本题满分为 12 分)解:(1)sin= ,且 ( ,) ,cos= ,(2 分)tan= = , (4 分)tan( + )= = (6 分)(2)( ,) ,(0, ) ,(0, ) ,(7 分)又cos()= ,sin ( )= , (9 分)cos=cos( )=coscos()+sinsin() (1

17、1 分)=( ) + = (12 分)20 (12 分)已知函数 f( x)= (2 x2x) (a0 ,且 a1) (1)判断函数 f(x)的奇偶性和单调性,并说明理由;(2)当 x(1,1)时,总有 f(m 1)+f(m)0,求实数 m 的取值范围【解答】解:(1)f(x)= (2 x2x)= (2 x2x)= f(x) ,f( x)为奇函数(2 分)设 x1x 2,f(x 1)f(x 2) = ( + )= ( ) (1+) ,y=2 x 是增函数, 0,又 1+ 0,当 0a1 时,f (x 1) f(x 2)0,即 f(x 1)f(x 2) ,函数 f(x )是减函数当 a1 时,f (x 1)f (x 2)0,即 f(x 1)f(x 2) ,函数 f(x )是增函数(6 分)(2)由 f(m1)+f (m)0 得 f(m) f(m 1)由(1)知 f(x)为奇函数, f(m)f(1 m) (8 分)又由(1)得当 0a1 时,函数 f(x)是减函数 解得 m1 (10 分)当 a1 时,函数 f(x )是增函数 ,解得 0m (12 分)

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 期末试卷 > 高一上