1、2018 年吉林省中考数学试卷一、选择题(共 6 小题,每小题 2 分,满分 12 分)1 (2.00 分)计算( 1)(2)的结果是( )A2 B1 C2 D 32 (2.00 分)如图是由 4 个相同的小正方体组成的立体图形,它的主视图是( )A B C D3 (2.00 分)下列计算结果为 a6 的是( )Aa 2a3 Ba 12a2 C (a 2) 3 D ( a2) 34 (2.00 分)如图,将木条 a,b 与 c 钉在一起,1=70,2=50,要使木条a 与 b 平行,木条 a 旋转的度数至少是( )A10 B20 C50 D705 (2.00 分)如图,将 ABC 折叠,使点
2、A 与 BC 边中点 D 重合,折痕为 MN,若 AB=9,BC=6,则DNB 的周长为( )A12 B13 C14 D156 (2.00 分)我国古代数学著作孙子算经中有“鸡兔同笼”问题:“ 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何 ”设鸡 x 只,兔 y 只,可列方程组为( )A BC D二、填空题(共 8 小题,每小题 3 分,满分 24 分)7 (3.00 分)计算: = 8 (3.00 分)买单价 3 元的圆珠笔 m 支,应付 元9 (3.00 分)若 a+b=4,ab=1 ,则 a2b+ab2= 10 (3.00 分)若关于 x 的一元二次方程 x2+2xm=0 有两
3、个相等的实数根,则 m的值为 11 (3.00 分)如图,在平面直角坐标系中,A (4,0) ,B(0,3) ,以点 A 为圆心,AB 长为半径画弧,交 x 轴的负半轴于点 C,则点 C 坐标为 12 (3.00 分)如图是测量河宽的示意图,AE 与 BC 相交于点 D,B=C=90,测得 BD=120m,DC=60m,EC=50m,求得河宽 AB= m13 (3.00 分)如图, A,B,C ,D 是O 上的四个点, = ,若AOB=58,则BDC= 度14 (3.00 分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值 ”,记作 k,若 k= ,则该等腰三角形的顶角
4、为 度三、解答题(共 12 小题,满分 84 分)15 (5.00 分)某同学化简 a(a+2b )(a+b) (a b)出现了错误,解答过程如下:原式=a 2+2ab(a 2b2) (第一步)=a2+2aba2b2(第二步)=2abb2 (第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ;(2)写出此题正确的解答过程16 (5.00 分)如图,在正方形 ABCD 中,点 E,F 分别在 BC,CD 上,且BE=CF,求证:ABE BCF17 (5.00 分)一个不透明的口袋中有三个小球,上面分别标有字母 A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放
5、回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率18 (5.00 分)在平面直角坐标系中,反比例函数 y= (k 0)图象与一次函数y=x+2 图象的一个交点为 P,且点 P 的横坐标为 1,求该反比例函数的解析式19 (7.00 分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程根据以上信息,解答下列问题(1)冰冰同学所列方程中的 x 表示 ,庆庆同学所列方程中的 y 表示 ;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题20 (7.00 分)如图是由边长为 1 的小正方形组成
6、的 84 网格,每个小正方形的顶点叫做格点,点 A,B ,C,D 均在格点上,在网格中将点 D 按下列步骤移动:第一步:点 D 绕点 A 顺时针旋转 180得到点 D1;第二步:点 D1 绕点 B 顺时针旋转 90得到点 D2;第三步:点 D2 绕点 C 顺时针旋转 90回到点 D(1)请用圆规画出点 DD1D2D 经过的路径;(2)所画图形是 对称图形;(3)求所画图形的周长(结果保留 ) 21 (7.00 分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含 a,b , 的代数式表示旗杆 AB 的高度数学活动方案活动时间:20
7、18 年 4 月 2 日 活动地点:学校操场 填表人:林平课题 测量学校旗杆的高度活动目的 运用所学数学知识及方法解决实际问题方案示意图 测量步骤( 1)用 测得ADE=;(2)用 测得 BC=a 米,CD=b 米计算过程22 (7.00 分)为了调查甲、乙两台包装机分装标准质量为 400g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题收集数据:从甲、乙包装机分装的奶粉中各自随机抽取 10 袋,测得实际质量(单位:g)如下:甲:400 ,400,408,406,410,409,400,393, 394,395乙:403 ,404,396,399,402
8、,402,405,397, 402,398整理数据:表一 质量(g)频数种类393x 396396x 399399x 402402x 405405x 408408x 411甲 3 0 0 1 3乙 0 1 5 0分析数据:表二种类 平均数 中位数 众数 方差甲 401.5 400 36.85乙 400.8 402 8.56得出结论:包装机分装情况比较好的是 (填甲或乙) ,说明你的理由23 (8.00 分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用 30min小东骑自行车以300m/min 的速度直接回家,两人离家的路程 y(m)与各
9、自离开出发地的时间x(min )之间的函数图象如图所示(1)家与图书馆之间的路程为 m,小玲步行的速度为 m/min;(2)求小东离家的路程 y 关于 x 的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间24 (8.00 分)如图 ,在ABC 中,AB=AC,过 AB 上一点 D 作 DEAC 交 BC于点 E,以 E 为顶点,ED 为一边,作DEF=A,另一边 EF 交 AC 于点 F(1)求证:四边形 ADEF 为平行四边形;(2)当点 D 为 AB 中点时,ADEF 的形状为 ;(3)延长图中的 DE 到点 G,使 EG=DE,连接 AE,AG,FG,得到图,若AD=AG,判
10、断四边形 AEGF 的形状,并说明理由25 (10.00 分)如图,在矩形 ABCD 中,AB=2cm ,ADB=30P ,Q 两点分别从 A,B 同时出发,点 P 沿折线 ABBC 运动,在 AB 上的速度是 2cm/s,在 BC 上的速度是 2 cm/s;点 Q 在 BD 上以 2cm/s 的速度向终点 D 运动,过点 P 作PNAD,垂足为点 N连接 PQ,以 PQ,PN 为邻边作PQMN设运动的时间为 x(s) ,PQMN 与矩形 ABCD 重叠部分的图形面积为 y(cm 2)(1)当 PQ AB 时,x= ;(2)求 y 关于 x 的函数解析式,并写出 x 的取值范围;(3)直线 A
11、M 将矩形 ABCD 的面积分成 1:3 两部分时,直接写出 x 的值26 (10.00 分)如图,在平面直角坐标系中,抛物线 y=ax2+2ax3a(a 0)与 x轴相交于 A,B 两点,与 y 轴相交于点 C,顶点为 D,直线 DC 与 x 轴相交于点E(1)当 a=1 时,抛物线顶点 D 的坐标为 ,OE= ;(2)OE 的长是否与 a 值有关,说明你的理由;(3)设DEO=,4560,求 a 的取值范围;(4)以 DE 为斜边,在直线 DE 的左下方作等腰直角三角形 PDE设 P(m,n) ,直接写出 n 关于 m 的函数解析式及自变量 m 的取值范围2018 年吉林省中考数学试卷参考
12、答案与试题解析一、选择题(共 6 小题,每小题 2 分,满分 12 分)1 (2.00 分)计算( 1)(2)的结果是( )A2 B1 C2 D 3【分析】根据“ 两数相乘,同号得正” 即可求出结论【解答】解:(1)( 2)=2 故选:A【点评】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘” 是解题的关键2 (2.00 分)如图是由 4 个相同的小正方体组成的立体图形,它的主视图是( )A B C D【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【解答】解:从正面看易得第一层有 3 个正方形,第二层最右边有一个正方形故选:B【点评】本题
13、考查了三视图的知识,主视图是从物体的正面看得到的视图3 (2.00 分)下列计算结果为 a6 的是( )Aa 2a3 Ba 12a2 C (a 2) 3 D ( a2) 3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【解答】解:A、a 2a3=a5,此选项不符合题意;B、a 12a2=a10,此选项不符合题意;C、 ( a2) 3=a6,此选项符合题意;D、 (a 2) 3=a6,此选项不符合题意;故选:C【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则4 (2.00 分)如图,将木条 a,b 与 c 钉在一起,1=70
14、,2=50,要使木条a 与 b 平行,木条 a 旋转的度数至少是( )A10 B20 C50 D70【分析】根据同位角相等两直线平行,求出旋转后2 的同位角的度数,然后用1 减去即可得到木条 a 旋转的度数【解答】解:如图AOC=2=50时,OAb,要使木条 a 与 b 平行,木条 a 旋转的度数至少是 7050=20故选:B【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后2 的同位角的度数是解题的关键5 (2.00 分)如图,将 ABC 折叠,使点 A 与 BC 边中点 D 重合,折痕为 MN,若 AB=9,BC=6,则DNB 的周长为( )A12 B13 C1
15、4 D15【分析】由 D 为 BC 中点知 BD=3,再由折叠性质得 ND=NA,从而根据DNB 的周长=ND+NB+BD=NA +NB+BD=AB+BD 可得答案【解答】解:D 为 BC 的中点,且 BC=6,BD= BC=3,由折叠性质知 NA=ND,则DNB 的周长=ND+NB +BD=NA+NB+BD=AB+BD=3+9=12,故选:A【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6 (2.00 分)我国古代数学著作孙子算经中有“鸡兔同笼”问题:“ 今有鸡兔同笼,上有三十五头,下
16、有九十四足,问鸡兔各几何 ”设鸡 x 只,兔 y 只,可列方程组为( )A BC D【分析】根据题意可以列出相应的方程组,从而可以解答本题【解答】解:由题意可得,故选:D【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组二、填空题(共 8 小题,每小题 3 分,满分 24 分)7 (3.00 分)计算: = 4 【分析】根据算术平方根的概念去解即可算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果【解答】解:4 2=16, =4,故答案为 4【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致
17、错误8 (3.00 分)买单价 3 元的圆珠笔 m 支,应付 3m 元【分析】根据总价=单价 数量列出代数式【解答】解:依题意得:3m故答案是:3m【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式9 (3.00 分)若 a+b=4,ab=1 ,则 a2b+ab2= 4 【分析】直接利用提取公因式法分解因式,再把已知代入求出答案【解答】解:a+b=4,ab=1,a 2b+ab2=ab(a +b)=14=4故答案为:4【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键10 (3.00 分)若关于 x 的一元二次方程 x2+2xm=0 有两个相等的实数根,则 m
18、的值为 1 【分析】由于关于 x 的一元二次方程 x2+2xm=0 有两个相等的实数根,可知其判别式为 0,据此列出关于 m 的不等式,解答即可【解答】解:关于 x 的一元二次方程 x2+2xm=0 有两个相等的实数根,=b 24ac=0,即:2 24(m)=0,解得:m=1,故选答案为1【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况11 (3.00 分)如图,在平面直角坐标系中,A (4,0) ,B(0,3) ,以点 A 为圆心,AB 长为半径画弧,交 x 轴的负半轴于点 C,则点 C 坐标为 (1,0) 【分析】求出 OA、OB,根据勾股定理求出 AB
19、,即可得出 AC,求出 OC 长即可【解答】解:点 A,B 的坐标分别为(4,0) , (0,3) ,OA=4,OB=3,在 RtAOB 中,由勾股定理得:AB= =5,AC=AB=5,OC=54=1,点 C 的坐标为( 1,0 ) ,故答案为:(1,0) ,【点评】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC 的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方12 (3.00 分)如图是测量河宽的示意图,AE 与 BC 相交于点 D,B=C=90,测得 BD=120m,DC=60m,EC=50m,求得河宽 AB= 100 m【分析】由两角对应相等可得BADCED
20、,利用对应边成比例可得两岸间的大致距离 AB【解答】解:ADB=EDC ,ABC= ECD=90,ABD ECD, , ,解得:AB= (米) 故答案为:100【点评】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例13 (3.00 分)如图, A,B,C ,D 是O 上的四个点, = ,若AOB=58,则BDC= 29 度【分析】根据BDC= BOC 求解即可;【解答】解:连接 OC = ,AOB= BOC=58,BDC= BOC=29 ,故答案为 29【点评】本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识
21、,属于中考常考题型14 (3.00 分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值 ”,记作 k,若 k= ,则该等腰三角形的顶角为 36 度【分析】根据等腰三角形的性质得出B=C,根据三角形内角和定理和已知得出 5A=180 ,求出即可【解答】解:ABC 中,AB=AC ,B= C,等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若 k= ,A:B=1:2,即 5A=180 ,A=36,故答案为:36【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出 5A=180是解此题的关键三、解答题(
22、共 12 小题,满分 84 分)15 (5.00 分)某同学化简 a(a+2b )(a+b) (a b)出现了错误,解答过程如下:原式=a 2+2ab(a 2b2) (第一步)=a2+2aba2b2(第二步)=2abb2 (第三步)(1)该同学解答过程从第 二 步开始出错,错误原因是 去括号时没有变号 ;(2)写出此题正确的解答过程【分析】先计算乘法,然后计算减法【解答】解:(1)该同学解答过程从第 二步开始出错,错误原因是 去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a 2+2ab(a 2b2)=a2+2aba2+b2=2ab+b2【点评】考查了平方差公式和实数的运算,去括
23、号规律:a+(b +c)=a +b+c,括号前是“+”号,去括号时连同它前面的 “+”号一起去掉,括号内各项不变号;a (b c)=ab+c,括号前是“ ”号,去括号时连同它前面的 “”号一起去掉,括号内各项都要变号16 (5.00 分)如图,在正方形 ABCD 中,点 E,F 分别在 BC,CD 上,且BE=CF,求证:ABE BCF【分析】根据正方形的性质,利用 SAS 即可证明;【解答】证明:四边形 ABCD 是正方形,AB=BC,ABE=BCF=90,在ABE 和BCF 中,ABEBCF【点评】本题考查正方形的性质全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型1
24、7 (5.00 分)一个不透明的口袋中有三个小球,上面分别标有字母 A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率【解答】解:列表得:A B CA ( A,A) ( B,A) (C,A)B ( A,B) ( B,B) (C,B)C (A,C) (B,C) (C,C )由列表可知可能出现的结果共 9 种,其中两次摸出的小球所标字母相同的情况数有 3 种,所以该同学两次摸出的小球
25、所标字母相同的概率= = 【点评】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比18 (5.00 分)在平面直角坐标系中,反比例函数 y= (k 0)图象与一次函数y=x+2 图象的一个交点为 P,且点 P 的横坐标为 1,求该反比例函数的解析式【分析】先求出 P 点的坐标,再把 P 点的坐标代入反比例函数的解析式,即可求出答案【解答】解:把 x=1 代入 y=x+2 得:y=3,即 P 点的坐标是(1,3) ,把
26、P 点的坐标代入 y= 得:k=3,即反比例函数的解析式是 y= 【点评】本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征,能求出 P 点的坐标是解此题的关键19 (7.00 分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程根据以上信息,解答下列问题(1)冰冰同学所列方程中的 x 表示 甲队每天修路的长度 ,庆庆同学所列方程中的 y 表示 甲队修路 400 米所需时间 ;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题【分析】 (1)根据两人的方程思路,可得出:x 表示甲队每天修路的长度;y 表示甲队修路 40
27、0 米所需时间;(2)根据题意,可找出:(冰冰)甲队修路 400 米所用时间=乙队修路 600 米所用时间;(庆庆)乙队每天修路的长度甲队每天修路的长度 =20 米;(3)选择两个方程中的一个,解之即可得出结论【解答】解:(1)冰冰是根据时间相等列出的分式方程,x 表示甲队每天修路的长度;庆庆是根据乙队每天比甲队多修 20 米列出的分式方程,y 表示甲队修路 400 米所需时间故答案为:甲队每天修路的长度;甲队修路 400 米所需时间(2)冰冰用的等量关系是:甲队修路 400 米所用时间=乙队修路 600 米所用时间;庆庆用的等量关系是:乙队每天修路的长度甲队每天修路的长度 =20 米(选择一
28、个即可) (3)选冰冰的方程: = ,去分母,得:400x+8000=600x ,移项,x 的系数化为 1,得: x=40,检验:当 x=40 时,x 、x+20 均不为零,x=40 答:甲队每天修路的长度为 40 米选庆庆的方程: =20,去分母,得:600400=20y,将 y 的系数化为 1,得:y=10 ,经验:当 y=10 时,分母 y 不为 0,y=10, =40答:甲队每天修路的长度为 40 米【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键20 (7.00 分)如图是由边长为 1 的小正方形组成的 84 网格,每个小正方形的顶点叫做格点,点 A,B
29、,C,D 均在格点上,在网格中将点 D 按下列步骤移动:第一步:点 D 绕点 A 顺时针旋转 180得到点 D1;第二步:点 D1 绕点 B 顺时针旋转 90得到点 D2;第三步:点 D2 绕点 C 顺时针旋转 90回到点 D(1)请用圆规画出点 DD1D2D 经过的路径;(2)所画图形是 轴对称 对称图形;(3)求所画图形的周长(结果保留 ) 【分析】 (1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点 DD1D2D 经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称(3)周长=4 =8【点评】本题考
30、查作图旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型21 (7.00 分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含 a,b , 的代数式表示旗杆 AB 的高度数学活动方案活动时间:2018 年 4 月 2 日 活动地点:学校操场 填表人:林平课题 测量学校旗杆的高度活动目的 运用所学数学知识及方法解决实际问题方案示意图 测量步骤(1)用 测角仪 测得ADE=;(2 )用 皮尺 测得 BC=a 米,CD=b 米计算过程【分析】在 RtADE 中,求出 AE,再利用 AB=AE+BE
31、 计算即可;【解答】解:(1)用 测角仪测得ADE= ;(2)用 皮尺测得 BC=a 米,CD=b 米(3)计算过程:四边形 BCDE 是矩形,DE=BC=a,BE=CD=b,在 RtADE 中,AE=EDtan=atan,AB=AE+EB=atan+b【点评】本题考查解直角三角形的应用仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题22 (7.00 分)为了调查甲、乙两台包装机分装标准质量为 400g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题收集数据:从甲、乙包装机分装的奶粉中各自随机抽取 10 袋,测得实际质量(单位:g)如
32、下:甲:400 ,400,408,406,410,409,400,393, 394,395乙:403 ,404,396,399,402,402,405,397, 402,398整理数据:表一 质量(g)频数种类393x 396396x 399399x 402402x 405405x 408408x 411甲 3 0 3 0 1 3乙 0 3 1 5 1 0分析数据:表二种类 平均数 中位数 众数 方差甲 401.5 400 400 36.85乙 400.8 402 402 8.56得出结论:包装机分装情况比较好的是 乙 (填甲或乙) ,说明你的理由【分析】整理数据:由题干中的数据结合表中范围确
33、定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得【解答】解:整理数据:表一 质量(g)频数种类393x 396396x 399399x 402402x 405405x 408408x 411甲 3 0 3 0 1 3乙 0 3 1 5 1 0分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,甲组数据的中位数为 400;乙组数据中 402 出现次数最多,有 3 次,乙组数据的众数为 402;表二种类 平均数 中位数 众数 方差甲 401.5 400 400 36.85乙 4
34、00.8 402 402 8.56得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙故答案为:乙【点评】本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键23 (8.00 分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用 30min小东骑自行车以300m/min 的速度直接回家,两人离家的路程 y(m)与各自离开出发地的时间x(min )之间的函数图象如图所示(1)家与图书馆之间的路程为 4000 m,小玲步行的速度为 200 m/min;(2)求小东离
35、家的路程 y 关于 x 的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间【分析】 (1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程 y 与时间 x 之间的函数关系式;(3)两人相遇实际上是函数图象求交点【解答】解:(1)结合题意和图象可知,线段 CD 为小玲路程与时间函数图象,折现 OAB 为为小东路程与时间图象则家与图书馆之间路程为 4000m,小玲步行速度为 200010=200m/s故答案为:4000,200(2)小东从离家 4000m 处以 300m/min 的速度返回家,则 xmin 时,他离家的路程 y=4000300x自变量 x 的范围为 0x
36、(3)由图象可知,两人相遇是在小玲改变速度之前4000300x=200x解得 x=8两人相遇时间为第 8 分钟【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题24 (8.00 分)如图 ,在ABC 中,AB=AC,过 AB 上一点 D 作 DEAC 交 BC于点 E,以 E 为顶点,ED 为一边,作DEF=A,另一边 EF 交 AC 于点 F(1)求证:四边形 ADEF 为平行四边形;(2)当点 D 为 AB 中点时,ADEF 的形状为 菱形 ;(3)延长图中的 DE 到点 G,使 EG=DE,连接 AE,AG,FG,得到图,若AD=AG,判断
37、四边形 AEGF 的形状,并说明理由【分析】 (1)根据平行线的性质得到BDE=A,根据题意得到DEF=BDE ,根据平行线的判定定理得到 ADEF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到 DE= AC,得到 AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到 AEEG,根据有一个角是直角的平行四边形是矩形证明【解答】 (1)证明:DEAC,BDE= A ,DEF= A ,DEF= BDE,ADEF,又 DE AC ,四边形 ADEF 为平行四边形;(2)解:ADEF 的形状为菱形,理由如下:点 D 为 AB 中点,AD= AB,DEAC,点 D 为 AB
38、 中点,DE= AC,AB=AC,AD=DE,平行四边形 ADEF 为菱形,故答案为:菱形;(3)四边形 AEGF 是矩形,理由如下:由(1)得,四边形 ADEF 为平行四边形,AFDE,AF=DE,EG=DE,AFDE,AF=GE ,四边形 AEGF 是平行四边形,AD=AG,EG=DE ,AE EG,四边形 AEGF 是矩形【点评】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键25 (10.00 分)如图,在矩形 ABCD 中,AB=2cm ,ADB=30P ,Q 两点分别从 A,B 同时出发,点 P 沿折线 ABBC 运动,在 AB 上的速度是 2cm/s,在
39、BC 上的速度是 2 cm/s;点 Q 在 BD 上以 2cm/s 的速度向终点 D 运动,过点 P 作PNAD,垂足为点 N连接 PQ,以 PQ,PN 为邻边作PQMN设运动的时间为 x(s) ,PQMN 与矩形 ABCD 重叠部分的图形面积为 y(cm 2)(1)当 PQ AB 时,x= s ;(2)求 y 关于 x 的函数解析式,并写出 x 的取值范围;(3)直线 AM 将矩形 ABCD 的面积分成 1:3 两部分时,直接写出 x 的值【分析】 (1)当 PQAB 时,BQ=2PB ,由此构建方程即可解决问题;(2)分三种情形分别求解即可解决问题;(3)分两种情形分别求解即可解决问题;【
40、解答】解:(1)当 PQAB 时,BQ=2PB ,2x=2 (2 2x) ,x= s故答案为 s(2)如图 1 中,当 0x 时,重叠部分是四边形 PQMNy=2x x=2 x2如图中,当 x1 时,重叠部分是四边形 PQENy= (2 x+2tx x= x2+ x如图 3 中,当 1x2 时,重叠部分是四边形 PNEQy= (2 x+2) x2 (x 1)= x23 x+4 ;综上所述,y= (3)如图 4 中,当直线 AM 经过 BC 中点 E 时,满足条件则有:tanEAB=tan QPB, = ,解得 x= 如图 5 中,当直线 AM 经过 CD 的中点 E 时,满足条件此时 tanD
41、EA=tanQPB, = ,解得 x= ,综上所述,当 x= s 或 时,直线 AM 将矩形 ABCD 的面积分成 1:3 两部分【点评】本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题26 (10.00 分)如图,在平面直角坐标系中,抛物线 y=ax2+2ax3a(a 0)与 x轴相交于 A,B 两点,与 y 轴相交于点 C,顶点为 D,直线 DC 与 x 轴相交于点E(1)当 a=1 时,抛物线顶点 D 的坐标为 ( 1, 4) ,OE= 3 ;(2)OE 的长是否与 a
42、值有关,说明你的理由;(3)设DEO=,4560,求 a 的取值范围;(4)以 DE 为斜边,在直线 DE 的左下方作等腰直角三角形 PDE设 P(m,n) ,直接写出 n 关于 m 的函数解析式及自变量 m 的取值范围【分析】 (1)求出直线 CD 的解析式即可解决问题;(2)利用参数 a,求出直线 CD 的解析式求出点 E 坐标即可判断;(3)求出落在特殊情形下的 a 的值即可判断;(4)如图,作 PM对称轴于 M,PNAB 于 N两条全等三角形的性质即可解决问题;【解答】解:(1)当 a=1 时,抛物线的解析式为 y=x22x+3,顶点 D(1,4) ,C(0,3) ,直线 CD 的解析
43、式为 y=x+3,E (3 ,0 ) ,OE=3,故答案为(1,4) ,3(2)结论:OE 的长与 a 值无关理由:y=ax 2+2ax3a,C (0,3a ) ,D(1,4a) ,直线 CD 的解析式为 y=ax3a,当 y=0 时,x=3,E (3 ,0 ) ,OE=3,OE 的长与 a 值无关(3)当 =45时,OC=OE=3 ,3a=3,a=1,当 =60时,在 RtOCE 中,OC= OE=3 ,3a=3 ,a= ,4560,a 的取值范围为 a1(4)如图,作 PM对称轴于 M,PNAB 于 NPD=PE, PMD=PNE=90 ,DPE=MPN=90,DPM=EPN,DPM EPN,PM=PN,PM=EN,D(1,4a) ,E(3,0) ,EN=4+n=3m,n=m1 ,