2024年江苏省连云港市灌南县九年级中考二模数学试卷(含答案)

上传人:雪**** 文档编号:256943 上传时间:2024-05-31 格式:DOCX 页数:29 大小:1.06MB
下载 相关 举报
2024年江苏省连云港市灌南县九年级中考二模数学试卷(含答案)_第1页
第1页 / 共29页
2024年江苏省连云港市灌南县九年级中考二模数学试卷(含答案)_第2页
第2页 / 共29页
2024年江苏省连云港市灌南县九年级中考二模数学试卷(含答案)_第3页
第3页 / 共29页
2024年江苏省连云港市灌南县九年级中考二模数学试卷(含答案)_第4页
第4页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2024年江苏省连云港市灌南县中考二模数学试题一、选择题(本大题共8小题,每小题3分,共24分)1(3分)实数3的相反数是()A3B3CD2(3分)育才校园文化博大精深,以下是“育”、“才”、“水”、“井”四字的甲骨文,其中是中心对称,但非轴对称图形的是()ABCD3(3分)下列运算正确的是()A4a+5b9abBa5aa4C(ab2)3a3b6D(a+b)2a2+b24(3分)石墨烯是目前世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000034毫米,将数0.00000034用科学记数法表示为()A34109B34108C3.4108D3.41075(3分)如

2、图是由5个相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD6(3分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()Aa2Bb1CabDab7(3分)如图,扇形AOB中,OA4,AOB90,C为上一点,BOC60,过点B作OC的垂线交OA于D,连接DC则图中阴影部分的面积为()ABCD8(3分)二次函数,若当xt时,y0,则当xt1时,函数值y的取值范围是()AB0y2CD二、填空题(本大题共8小题,每小题3分,本大题共24分不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9(3分)计算: 10(3分)若分式有意义,则x的取值范围是 11(3分)分解因式:x

3、3x 12(3分)在我国古代重要的数学著作孙子算经中,记载有这样一个数学问题:“今有三人共车,二车空;二人共车,九人步问车有几何?”意思是:每3人共乘一辆车,最终剩余2辆空车;每2人共乘一辆车,最终有9人无车可乘,问车辆有多少?若设车辆数为x,则可列方程为 13(3分)将等腰直角三角板按如图所示的方式摆放,若ab,115,则2 14(3分)ABC的边AB8,边AC,BC的长是一元二次方程m216m+600的两根,则ABC的外接圆的半径是 15(3分)如图,在ABC中,BD平分ABC,DEBC交AB于点E,若AB6,BC4,则DE 16(3分)如图,在ABC中,A90,ABAC9,以点A为圆心、

4、6为半径的圆上有一个动点P连接AP、BP、CP,则2BP+3CP的最小值是 三、解答题(本大题共11小题,共102分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17(6分)计算:18(6分)解方程:19(6分)解方程组:20(8分)观察下列各式规律第1个等式:第2个等式:第3个等式:第4个等式:(1)根据上述规律,请写出第5个等式: ;(2)请猜想出满足上述规律的第n个等式,并证明21(8分)为了提高学生的综合素养,某校开设了五门手工活动课按照类别分为:A“剪纸”,B“沙画”,C“葫芦雕刻”,D“泥塑”,E“插花”为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进

5、行调查,将调查结果绘制成如下两幅不完整的统计图根据以上信息,回答下列问题:(1)本次调查的样本容量为 ;(2)统计图中的a ,b (3)若该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数22(10分)“诗以言志,词以言情”,诗词文化源远流长,是中华民族的瑰宝,某班语文老师准备在班内举行“飞花令”比赛,测测同学们的诗词储备量!她为本班学生准备了如图所示的可自由转动的转盘,将其平均分成四个面积相等的扇形,并分别标上主题字:“春”“花”“山”“月”,每轮比赛开始前,由语文老师转动转盘,该轮参加比赛的同学以语文老师转到的字为主题字进行飞花令比赛(指针指向两个扇形的交线时无效,需重新转动转

6、盘)李涵和王芳分别是第一轮、第二轮参赛的选手(1)语文老师转动转盘一次,恰好转到“春”的概率为 ;(2)李涵和王芳都比较擅长“春”和“花”为主题字的诗句,请用画树状图或列表法求她们至少有一人以自己擅长的主题字进行飞花令比赛的概率23(10分)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得顶部A的仰角为31,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得顶部A的仰角为42求凉亭AB的高度(ABBE,DEBE,FGBE结果精确到0.1m)(参考数据:sin310.52,cos310.86,tan310.60,sin420.67,c

7、os420.74,tan420.90)24(10分)某学习小组在学习了正方形的相关知识后发现:正方形对角线上任意一点与正方形其他两个顶点相连形成的线段一定相等该学习小组进一步探究发现:若过该点作其中一条线段的垂线与正方形的两边相交形成的较长线段和前面形成的两条线段也有关系请根据下列探究思路完成作图和解答:(1)尺规作图:过点E作EFAE分别交边AD、BC于点G、F(保留作图痕迹,不写作法)(2)求证:ECEFAE25(12分)某科技公司用160万元作为新产品研发费用,成功研制出成本价为4元/件的新产品,在销售中发现销售单价x(单位:元)与年销售量y(单位:万件)之间的关系如图所示,其中AB为反

8、比例函数图象的一部分,BC为一次函数图象的一部分(1)请直接写出y与x之间的函数关系式(2)设销售产品年利润为w(万元),求出第一年年利润w与x之间的函数关系式,并求出第一年年利润最大值;(3)在(2)的条件下,假设第一年恰好按年利润w取得最大值进行销售,现根据第一年的盈亏情况(若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损记作下一年的成本,决定第二年将这种新产品每件的销售价格x定在8元以上(x8)当第二年年利润不低于103万元时,请你根据题意,直接写出x的取值范围 26(12分)如图1,直线y2x+2交x轴于点A,交y轴于点C,过A、C两点的抛物线与x轴的另一交点为B(1)请

9、求出该抛物线的函数解析式;(2)点D是第二象限抛物线上一点,设点D横坐标为m如图2,连接BD,CD,BC,当BDC面积为4时,求点D的坐标;如图3,连接OD,将线段OD绕O点顺时针旋转90,得到线段OE,过点E作EFx轴交直线AC于F,求线段EF的最大值及此时点D的坐标27(14分)如图,在ABCD中,A135,AB6,ABCD的面积为12,点E在边AB上,且AE2,动点P从点E出发,沿折线EAADDC以每秒1个单位长度的速度运动到点C停止将射线EP绕点E逆时针方向旋转45得到射线EQ,点Q在折线段BCD上,连结PQ设点P运动的时间为t(秒)(t0)(1)AD的长为 ;(2)当EQ将ABCD的

10、面积分为1:2时,求t的取值范围;(3)如图,当点Q在边BC上时,求PE:EQ的值;(4)如图,作点Q关于PE的对称点Q,在点P从点E出发运动到点C的过程中,点Q经过的路径长为 参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1(3分)实数3的相反数是()A3B3CD【解答】解:实数3的相反数是:3故选:B2(3分)育才校园文化博大精深,以下是“育”、“才”、“水”、“井”四字的甲骨文,其中是中心对称,但非轴对称图形的是()ABCD【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,

11、是中心对称图形,故此选项符合题意;D、是轴对称图形,也是中心对称图形,故此选项不合题意故选:C3(3分)下列运算正确的是()A4a+5b9abBa5aa4C(ab2)3a3b6D(a+b)2a2+b2【解答】解:A、4a与5b不能合并,故A不符合题意;B、a5aa4,故B符合题意;C、(ab2)3a3b6,故C不符合题意;D、(a+b)2a2+2ab+b2,故D不符合题意;故选:B4(3分)石墨烯是目前世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000034毫米,将数0.00000034用科学记数法表示为()A34109B34108C3.4108D3.4107

12、【解答】解:0.000000343.4107故选:D5(3分)如图是由5个相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD【解答】解:从上面看第一列是一个小正方形,第二列是两个小正方形,第三列居上是一个小正方形故选:C6(3分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()Aa2Bb1CabDab【解答】解:根据图形可以得到:2a01b2;所以:A、B、C都是错误的;故选:D7(3分)如图,扇形AOB中,OA4,AOB90,C为上一点,BOC60,过点B作OC的垂线交OA于D,连接DC则图中阴影部分的面积为()ABCD【解答】解:如图,连接BC,BOC60,OBOC

13、,BOC是正三角形,OBOCBC4,CDOC,OECEOC2,在RtODE中,OE2,DOE906030,DEOE,OD2DE,S阴影部分S扇形OBC+SCODSBOD+44故选:A8(3分)二次函数,若当xt时,y0,则当xt1时,函数值y的取值范围是()AB0y2CD【解答】解:由题意得,抛物线的对称轴为直线x0a,04a114a0设yx2x+a(0a)与x轴交点为(x1,0),(x2,0)(其中x1x2),当xt时,y0,且抛物线开口向上,x1tx2,抛物线的对称轴为x,x0或1时,ya0,0x1,x21x11t1x210,当x11xx21时,y随着x的增大而减少,当xt1时,y(x11

14、)2(x11)+a22x1,y(x21)2(x21)+a22x2,0x1,当xt1时,y2,x21,当xt1时,y0,函数值y的取值范围为0y2故选:B二、填空题(本大题共8小题,每小题3分,本大题共24分不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9(3分)计算:【解答】解:的立方为,的立方根为,故答案为10(3分)若分式有意义,则x的取值范围是 x3【解答】解:由题意得:x30,解得:x3,故答案为:x311(3分)分解因式:x3xx(x+1)(x1)【解答】解:x3x,x(x21),x(x+1)(x1)故答案为:x(x+1)(x1)12(3分)在我国古代重要的数学著作孙子算

15、经中,记载有这样一个数学问题:“今有三人共车,二车空;二人共车,九人步问车有几何?”意思是:每3人共乘一辆车,最终剩余2辆空车;每2人共乘一辆车,最终有9人无车可乘,问车辆有多少?若设车辆数为x,则可列方程为 3(x2)2x+9【解答】解:根据题意得:3(x2)2x+9,故答案为:3(x2)2x+913(3分)将等腰直角三角板按如图所示的方式摆放,若ab,115,则2150【解答】解:过A作ADa,ab,ADb,BAD115,3CAD,CAD451530,330,218030150故答案为:15014(3分)ABC的边AB8,边AC,BC的长是一元二次方程m216m+600的两根,则ABC的外

16、接圆的半径是 5【解答】解:m216m+600,(m10)(m6)0,解得:m110,m26,62+82102,ABC是直角三角形,且斜边长为10,直角三角形的外接圆的圆心在斜边上,且为斜边的中点,ABC的外接圆半径为,故答案为:515(3分)如图,在ABC中,BD平分ABC,DEBC交AB于点E,若AB6,BC4,则DE【解答】解:过点D作DMAB于点M,作DNBC于点N,过点B作BFAC于点F,如图所示.BD平分ABC,DMDNSABDABDMADBF,SBCDBCDNCDBF,DEBC,ADEACB,即,DE故答案为:16(3分)如图,在ABC中,A90,ABAC9,以点A为圆心、6为半

17、径的圆上有一个动点P连接AP、BP、CP,则2BP+3CP的最小值是 3【解答】解:在AB上截取一点F,使AF4,AB9,AP6, ,又FAPPAB,FAPPAB,则,要使2BP+3CP的值最小,只要PF+CP的值最小,当C、P、F三点在同一条直线上,即P为CF与A的交点时,PF+CP的值最小为CF的长,在RtAFC中,AF4,AC9,即的最小值为,2BP+3CP的最小值是3故答案为:3三、解答题(本大题共11小题,共102分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17(6分)计算:【解答】解:+21+118(6分)解方程:【解答】解:方程两侧同乘x(x2)得:4x

18、2x(x2),整理解得:x2,检验:x2是增根,所以,原方程无解19(6分)解方程组:【解答】解:由+,得3x3,解得x1,把代入,解得y2,原方程组的解是:20(8分)观察下列各式规律第1个等式:第2个等式:第3个等式:第4个等式:(1)根据上述规律,请写出第5个等式:;(2)请猜想出满足上述规律的第n个等式,并证明【解答】解:(1)第1个等式:,第2个等式:,第3个等式:,第4个等式:,第五个等式为:故答案为:;(2)由(1)猜想,第n个等式为证明:等式左边,左边右边,等式成立21(8分)为了提高学生的综合素养,某校开设了五门手工活动课按照类别分为:A“剪纸”,B“沙画”,C“葫芦雕刻”,

19、D“泥塑”,E“插花”为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图根据以上信息,回答下列问题:(1)本次调查的样本容量为 120;(2)统计图中的a12,b36(3)若该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数【解答】解:(1)1815%120(人),因此样本容量为120;故答案为:120;(2)a12010%12(人),b12030%36(人),故答案为:12,36;(3)2500625(人),答:该校2500名学生中喜爱“葫芦雕刻”的约有625人22(10分)“诗以言志,词以言情”,诗词文化源远流长,是中华民族的

20、瑰宝,某班语文老师准备在班内举行“飞花令”比赛,测测同学们的诗词储备量!她为本班学生准备了如图所示的可自由转动的转盘,将其平均分成四个面积相等的扇形,并分别标上主题字:“春”“花”“山”“月”,每轮比赛开始前,由语文老师转动转盘,该轮参加比赛的同学以语文老师转到的字为主题字进行飞花令比赛(指针指向两个扇形的交线时无效,需重新转动转盘)李涵和王芳分别是第一轮、第二轮参赛的选手(1)语文老师转动转盘一次,恰好转到“春”的概率为 ;(2)李涵和王芳都比较擅长“春”和“花”为主题字的诗句,请用画树状图或列表法求她们至少有一人以自己擅长的主题字进行飞花令比赛的概率【解答】解:(1)语文老师转动转盘一次,

21、恰好转到“春”的概率为,故答案为(2)列表格如下:李涵 王芳春花山月春春春春花春山春月花花春花花花山花月山山春山花山山山月月月春月花月山月月共16种结果,其中至少有一人转到“春”或“花”的有12种情况她们至少有一人以自己擅长的主题字进行飞花令比赛的概率为23(10分)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得顶部A的仰角为31,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得顶部A的仰角为42求凉亭AB的高度(ABBE,DEBE,FGBE结果精确到0.1m)(参考数据:sin310.52,cos310.86,tan310.6

22、0,sin420.67,cos420.74,tan420.90)【解答】解:延长DF交AB于点C,如图所示,由题意可得,DEFG1.5m,ADC31,AFC42,DF3m,ACDACF90,CD,CF,DFCDCF,3,解得AC5.4,ABAC+BC5.4+1.56.9(m),即凉亭AB的高度约为6.9m24(10分)某学习小组在学习了正方形的相关知识后发现:正方形对角线上任意一点与正方形其他两个顶点相连形成的线段一定相等该学习小组进一步探究发现:若过该点作其中一条线段的垂线与正方形的两边相交形成的较长线段和前面形成的两条线段也有关系请根据下列探究思路完成作图和解答:(1)尺规作图:过点E作E

23、FAE分别交边AD、BC于点G、F(保留作图痕迹,不写作法)(2)求证:ECEFAE【解答】(1)解:图形如图所示:(2)证明:四边形ABCD是正方形BD平分ADC,ABCBCDBAD90,ADCDADECFE,在ADE和CDE中,ADECDE(SAS)DAEDCE,AECE,又BAEBADDAEBCEBCDDCEBAEBCE,EFAE,AEF90,ABF+BFE+FEA+BAE360,且ABF+FEA90+90180BAE+BFE180BFE+EFC180,EFCBAEECFEFC,EFECAE故答案为:ADECFE,AEF90,BFE+EFC180,ECFEFC25(12分)某科技公司用1

24、60万元作为新产品研发费用,成功研制出成本价为4元/件的新产品,在销售中发现销售单价x(单位:元)与年销售量y(单位:万件)之间的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分(1)请直接写出y与x之间的函数关系式(2)设销售产品年利润为w(万元),求出第一年年利润w与x之间的函数关系式,并求出第一年年利润最大值;(3)在(2)的条件下,假设第一年恰好按年利润w取得最大值进行销售,现根据第一年的盈亏情况(若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损记作下一年的成本,决定第二年将这种新产品每件的销售价格x定在8元以上(x8)当第二年年利润不低于103

25、万元时,请你根据题意,直接写出x的取值范围 11x21【解答】解:(1)当4x8时,设y,将A(4,40)代入得,k440160,y与x之间的函数关系式为y;当8x28时,设ykx+b,将B(8,20),C(28,0)代入得,解得,y与x之间的函数关系式为yx+28,综上所述,y;(2)由(1)及题意得:w,当4x8时,w,6400,w随x的增大而增大,故当x8时,w取得最大值为80;当8x28时,wx2+32x272(x16)216,10,故函数有最大值,当x16时,Smax16;1680,当每件的销售价格定为16元时,第一年年利润的最大值为16万元,此时亏损16万元;(3)由(2)及题意得

26、:w(x+28)(x4)16x2+32x128(x16)2+128,当x8时,y64;当x16时,y128;当x28时,y16,如图所示:当w103时,则x2+32x128103,解得x111,x221,由函数图象和性质可知,当11x21时,w103,x的取值范围为11x21,答案为:11x2126(12分)如图1,直线y2x+2交x轴于点A,交y轴于点C,过A、C两点的抛物线与x轴的另一交点为B(1)请求出该抛物线的函数解析式;(2)点D是第二象限抛物线上一点,设点D横坐标为m如图2,连接BD,CD,BC,当BDC面积为4时,求点D的坐标;如图3,连接OD,将线段OD绕O点顺时针旋转90,得

27、到线段OE,过点E作EFx轴交直线AC于F,求线段EF的最大值及此时点D的坐标【解答】解:(1)直线y2x+2交x轴于点A,交y轴于点C,当x0时,y2;当y0时,x1;点A坐标为(1,0),点C坐标为(0,2),抛物线过A、C两点,将A、C两点坐标代入得:,解得,抛物线的函数解析式为;(2)当时,解得:x14,x21,B点坐标为(4,0),设直线BC的解析式为ykx+b(k0),代入B(4,0),C(0,2)得,解得:,直线BC的解析式为,过点D作DPy轴交BC于P,设点D横坐标为m,则,BDC面积为4,解得:m1m22,D(2,3);如图,过点D作DHOB于点H,EF交y轴于点G,DHOE

28、GO90,由旋转得:ODOE,DOE90,BOC90,HODGOE,DHOEGO(AAS),DHEG,HOGO,设点D横坐标为m,则,OHm,GOm,又点D在第二象限,OD绕点O顺时针旋转90得OE,点E在第一象限点E坐标为,EFx轴交直线AC于点F,点F的纵坐标与点E纵坐标相等,设直线AC的解析式为ymx+n(m0),代入A(1,0),C(0,2)得,解得,直线AC的解析式为y2x+2,将F点纵坐标m代入得m2x+2,解得,F点坐标为,当m2时,EF最大,最大值为3,当m2时,点D的坐标为(2,3),线段EF的最大值为3,此时点D的坐标为(2,3)27(14分)如图,在ABCD中,A135,

29、AB6,ABCD的面积为12,点E在边AB上,且AE2,动点P从点E出发,沿折线EAADDC以每秒1个单位长度的速度运动到点C停止将射线EP绕点E逆时针方向旋转45得到射线EQ,点Q在折线段BCD上,连结PQ设点P运动的时间为t(秒)(t0)(1)AD的长为 2;(2)当EQ将ABCD的面积分为1:2时,求t的取值范围;(3)如图,当点Q在边BC上时,求PE:EQ的值;(4)如图,作点Q关于PE的对称点Q,在点P从点E出发运动到点C的过程中,点Q经过的路径长为 【解答】解:(1)如图,过点A作AFCD,在ABCD中,BAD135,AB6,ABCD,ABCD6,SABCDCDAF12,AFAB,

30、AF2,FAD1359045,AFD为等腰直角三角形,故答案为:;(2)当点P在线段EA上时,将射线EP绕点E逆时针方向旋转45得到射线EQ,AEQ45,AEQ+A180,ADEQ,ADBC,CDAB,BCEQ,四边形BEQC和四边形AEQD为等高的两个平行四边形,AE2,AB6,BE4,四边形BEQC和四边形AEQD的面积比为,满足题意,动点P从点E出发,沿折线EAADDC以每秒1个单位长度的速度运动,此时0t2;当点Q与点C重合时:如图,此时,满足题意,过点C作CMBE,则,CM2,EMBEBM2BM,CMME,CEM45,PEC45,MEP90CMB,CMPE,CPAB,四边形CMEP为

31、矩形,CPME2,点P运动的路程为,综上,0t2或(3)如图,连接EC,过点C作CFBE,同 (2)可得到CFBFEF2,CEB45,CBECEB45,BCE90,BECPEQ45,BEQCEP45CEQ,ABCD,BCDA135,PCE1359045B,BQECPE,;(4)当点P在线段EA上时,此时,点Q的位置固定不变,连接QQ,如图,旋转,PEQPEQ45,QEQE,由(2)知,QEQ90,QEQ为等腰直角三角形,过点E作EFQQ,则,F,A重合,Q,A,Q三点共线,当点P从点A运动至EPCD时,过点E作EGAB,交CD于点G,CDAB,由(1)知平行四边形的高线长为2,EGCD,EG2

32、AE,QEQAEG90,QEGAEQ90QEA,QEQE,EGQEAQ,EGQEAQ90,Q的运动轨迹为当点P在线段EA上时线段QQ,运动的路径长为4,当点P从EP垂直于CD运动至点C时,如图,连接CE,过点E作EKAD,连接KQ,则四边形EKDA为平行四边形,BCE90,EKDABCD135,EKC180EKD45,ECKBCDBCE45,CEK90QEQ,CEQQEK,EQEQ,ECQEKQ,ECQEKQ90,CKQ45,Q在射线KQ上运动,当P运动到点C时,此时点Q与点B重合,此时,Q在BC的延长线上,且,KCQ180BCD45,KQC90,KQC为等腰直角三角形,综上,点Q运动路径长为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 第二次模拟