六年级奥数(第29讲) 抽屉原理(一)

上传人:优****虫 文档编号:251688 上传时间:2023-10-19 格式:DOC 页数:5 大小:42.50KB
下载 相关 举报
六年级奥数(第29讲) 抽屉原理(一)_第1页
第1页 / 共5页
六年级奥数(第29讲) 抽屉原理(一)_第2页
第2页 / 共5页
六年级奥数(第29讲) 抽屉原理(一)_第3页
第3页 / 共5页
六年级奥数(第29讲) 抽屉原理(一)_第4页
第4页 / 共5页
六年级奥数(第29讲) 抽屉原理(一)_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第29讲 抽屉原理(一)一、知识要点如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。基本的抽屉原理有两条:(1)如果把x+k(k1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把mxk(xk1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a

2、、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。本周我们先来学习第(1)条原理及其应用。二、精讲精练【例题1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。练习1:1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,

3、为什么?2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?【例题2】某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。买书的类型有:买一本的:有语文、数学、外语3种。买二本的:有语文和数学、语文和外

4、语、数学和外语3种。买三本的:有语文、数学和外语1种。3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。练习2:1、某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个同学才能保证一定有两人所借的图书属于同一种?3、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有两个同色的?【例题3】一只袋中装有

5、许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副同色的?把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有1副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。再根据抽屉原理,只要再摸出2只手套又能保证有一副手套是同色的,以此类推。把四种颜色看成是4个抽屉,要保证有3副同色的,先考虑保证有一副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套又能保证有一副手套是同色的。以此类推,要保证有3副同色的,共摸出的手套有 5+2+2=

6、9(只)答:最少要摸出9只手套才能保证有3副同色的。练习3:1、一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有4副同色的?2、布袋中有同样规格但颜色不同的袜子若干只。颜色有白、黑、蓝三种。问:最少要摸出多少只袜子,才能保证有3双同色的?3、一个布袋里有红、黄、蓝色袜子各8只。每次从布袋中拿出一只袜子,最少要拿出多少只才能保证其中至少有2双不同袜子?【例题4】任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?一个自然数除以4的余数只能是0,1,2,3。如果有2个自然数除以4的余数相同,那么这两个自然数的差就是4的倍数。一个自

7、然数除以4的余数可能是0,1,2,3,所以,把这4种情况看做时个抽屉,把任意5个不相同的自然数看做5个元素,再根据抽屉原理,必有一个抽屉中至少有2个数,而这两个数的余数是相同的,它们的差一定是4的倍数。所以,任意5个不相同的自然数,其中至少有两个数的差是4的倍数。练习4:1、任意6个不相同的自然数,其中至少有两个数的差是5的倍数,这是为什么?2、任意取几个不相同的自然数,才能保证至少有两个数的差是8的倍数?3、证明在任意的(n+1)个不相同的自然数中,必有两个数之差为n的倍数。【例题5】能否在图29-1的5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线A

8、D、BC上的各个数的和互不相同?由图29-1可知:所有空格中只能填写1或2或3。因此每行、每列、每条对角线上的5个数的和最小是15=5,最大是35=15。从5到15共有11个互不相同的整数值,把这11个值看承11个抽屉,把每行、每列及每条对角线上的各个数的和看承元素,只要考虑元素和抽屉的个数就可得出结论是不可能的。因为每行、每列、每条对角线上的5个数的和最小是5,最大是15,从5到15共有11个互不相同的整数值。而5行、5列及两条对角线上的各个数的和共有12个,所以,这12条线上的各个数的和至少有两个是相同的。练习5:1、能否在6行6列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线上的各个数的和互不相同?为什么?2、证明在88的方格表的每个空格中,分别填上3,4,5这三个数中的任一个,在每行、每列及对角线上的各个数的和中至少有两个和是相同的。3、在39的方格图中(如图29-2所示),将每一个小方格涂上红色或者蓝色,不论如何涂色,其中至少有两列的涂色方式相同。这是为什么?5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 小学 > 小学数学 > 奥数 > 六年级