1、概率一、 选择题(本大题共8个小题,共40分)1.(2020湖北恩施)“彩缕碧筠粽,香梗白玉团”端午佳节,小明妈妈准备了豆沙粽2个、红枣烷4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽小明任意选取一个,选到甜粽的概率是()ABCD2.(2020攀枝花)下列事件中,为必然事件的是()A明天要下雨B|a|0C21D打开电视机,它正在播广告3.(2021湖南永州)小明计划到永州市体验民俗文化,想从“零陵渔鼓,瑶族长鼓舞,东安武术,舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞,舜帝祭典”的概率为()ABCD4.(2022广西)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场
2、地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是()A1BCD5.(2021湖南长沙市中考真题)在一次数学活动课上,某数学老师将110共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下)他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17根据以上信息,下列判断正确的是( )A戊同学手里拿的两张卡片上的数字是8和9 B丙同学手里拿的两张卡片上的数字是9和7C
3、丁同学手里拿的两张卡片上的数字是3和4 D甲同学手里拿的两张卡片上的数字是2和96.(2020北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A14B13C12D237.(2021安徽中考真题)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )ABCD8.(2022湖北武汉)班长邀请,四位同学参加圆桌会议如图,班长坐在号座位,四位同学随机坐在四个座位,则
4、,两位同学座位相邻的概率是()ABCD二、 填空题(本大题共5个小题,共15分)9.(2021广西贺州)盒子里有4张形状、大小、质地完全相同的卡片,上面分别标着数字2,3,4,5,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为偶数的概率是_10.(2021浙江嘉兴市中考真题)看了田忌赛马故事后,小杨用数学模型来分析齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,大数为胜,三场两胜则赢已知齐王的三匹马出场顺序为10,8,6则田忌能赢得比赛的概率为_马匹姓名下等马中等马上等马齐王6810田忌57911.(2020四川广元)如图,随机闭合开关S1、S2、S3中的
5、两个,则灯泡发光的概率为_12.(2021江苏苏州市中考真题)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是_13.(2020武威)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有个三、 解答题(本大题共3个小题,共45分)14.(2020广西柳州)共享经济已经进入人们的生活小沈收集了自己感兴趣的4个共享经济领域的图标,共享出
6、行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同)现将这四张卡片背面朝上,洗匀放好(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A、B、C、D表示)15.(2021湖北黄冈市中考真题)2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科第一轮,各市从语文、数学、英语三个学科中随机抽取一科;
7、第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科(1)黄冈在第一轮抽到语文学科的概率是_;(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率16.(2020四川)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A优秀; B良好; C及格:D不及格根据调查统计结果,绘制了如图所示的不完整的统计表垃圾分类知识测试成绩统计表测试等级百分比人数A优秀5%20B良好60C及格45%mD不及格n请
8、结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加某班要从在这次测试成绩为优秀的小明和小亮中选一人参加班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加请用树状图或列
9、表法说明这个游戏规则是否公平参考答案1.D 2.B 3.D 4.B 5.A 6.C 7.D 8.C9.10.11.12.13.1714.(1)有共享出行、共享服务、共享物品、共享知识,共四张卡片,小沈从中随机抽取一张卡片是“共享服务”的概率是,故答案为:;(2)画树状图如图:共有12种等可能的结果数,其中两张卡片恰好是“共享出行”和“共享知识”的结果数为2,抽到的两张卡片恰好是“共享出行”和“共享知识”的概率=15.解:(1)黄冈在第一轮随机抽取一科共有3种等可能性的结果,则黄冈在第一轮抽到语文学科的概率是,故答案为:;(2)将物理、化学、历史三个学科分别记为,将道德与法治、地理、生物三个学科
10、分别记为,画树状图如下:由此可知,黄冈在第二轮和第三轮抽签中的所有可能结果共有9种,它们每一种出现的可能性都相等;其中,抽到的学科恰好是历史和地理的结果只有1种,则所求的概率为,答:黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率是16.(1)本次参与调查的学生人数为:205%=400(人),m=40045%=180,4002060180=140,n=140400100%=35%;(2)5600=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,P(小明参加)=,P(小亮参加)=1=,这个游戏规则不公平