2023年中考数学压轴题训练:二次函数综合(角度问题)含答案

上传人:雪**** 文档编号:239232 上传时间:2023-04-06 格式:DOC 页数:12 大小:1.81MB
下载 相关 举报
2023年中考数学压轴题训练:二次函数综合(角度问题)含答案_第1页
第1页 / 共12页
2023年中考数学压轴题训练:二次函数综合(角度问题)含答案_第2页
第2页 / 共12页
2023年中考数学压轴题训练:二次函数综合(角度问题)含答案_第3页
第3页 / 共12页
2023年中考数学压轴题训练:二次函数综合(角度问题)含答案_第4页
第4页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023年中考数学压轴题:二次函数综合(角度问题)1抛物线与坐标轴分别交于,三点点是第一象限内抛物线上的一点(1)求抛物线解析式:(2)连接,若,求点的坐标;(3)连接,是否存在点,使得,若存在,求出点的坐标,若不存在,请说明理由2综合与探究如图1,在平面直角坐标系中,二次函数的图象与x轴交于A,B两点,与直线l交于B,C两点,其中点A的坐标为,点C的坐标为(1)求二次函数的表达式和点B的坐标(2)若P为直线l上一点,Q为抛物线上一点,当四边形为平行四边形时,求点P的坐标(3)如图2,若抛物线与y轴交于点D,连接,抛物线上是否存在点M,使?若存在,请直接写出点M的坐标;若不存在,请说明理由3如

2、图,在平面直角坐标系中,二次函数的图象与x轴分别交于点、,与y轴交于点C(1)求该二次函数的表达式;(2)若点P是该二次函数图象上的动点,且P在直线的上方,如图1,当平分时,求点P的坐标;如图2,连接交BC于E点,设,求k的最大值4如图,已知抛物线与x轴交于,两点,与y轴交于点C且有(1)求抛物线解析式;(2)点P在抛物线的对称轴上,使得是以为底的等腰三角形,求出点P的坐标;(3)在(2)的条件下,若点Q在抛物线的对称轴上,并且有,直接写出点Q的坐标5如图,以的边和边上高所在直线建立平面直角坐标系,已知,抛物线经过A,B,C三点(1)求抛物线解析式(2)点G是x轴上一动点,过点G作轴交抛物线于

3、点H,抛物线上有一点Q,若以C,G,Q,H为顶点的四边形为平行四边形,求点G的坐标(3)点P是抛物线上的一点,当时,求点P的坐标6 如图,抛物线与x轴交于两点,与y轴交于C点,点D在抛物线上且横坐标为3(1)求抛物线关系式;(2)的值(3)点P为抛物线上一点,且,求点P的坐标7如图,二次函数的图象经过点,直线与轴、轴交于点D,E(1)求该二次函数的解析式(2)点M为该二次函数图象上一动点若点M在图象上的B,C两点之间,求的面积的最大值若,求点M的坐标8如图,已知抛物线的图象与x轴交于A,B两点,与y轴交于点C,过点B的直线l与抛物线交于点D,与y轴交于点F该抛物线的对称轴交直线l于点E,与x轴

4、交于点G,且(1)求该抛物线的解析式;(2)点M为抛物线上一点,求点M的坐标;(3)已知点P为抛物线对称轴上的点,满足在直线上存在唯一的点Q,使得,求点P的坐标9如图,抛物线与y轴交于点C,与x轴交于A,B两点,点A在点B左侧点A的坐标为(1)求抛物线的解析式;(2)在直线下方的抛物线上是否存在一点P,使得的面积等于面积的三分之二?若存在,求出此时的长;若不存在,请说明理由(3)将直线绕着点C旋转得到直线l,直线l与抛物线的交点为M(异于点C),求M点坐标10二次函数的图象经过点,与轴交于点,点为第二象限内抛物线上一点,连接、,交于点,过点作轴于点(1)求二次函数的表达式;(2)连接,求的最大

5、值;(3)连接,当时,求直线的表达式11如图,在直角坐标系中,二次函数的图像与轴相交于,两点(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图像上有一点,使的面积等于6,求点的坐标;(3)对于(2)中的点,在此抛物线上是否存在点,使?若存在,求出点的坐标,若不存在,请说明理由12如图,在二次函数(m是常数,且)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D其对称轴与线段BC交于点E,与x轴交于点F连接AC,BD(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求的度数;(2)若,求m的值;(3)若在第四象限内二次函数(m是常数,且)的图像上,始终

6、存在一点P,使得,请结合函数的图像,直接写出m的取值范围13如图1,直线y2x2交x轴于点A,交y轴于点C,过A、C两点的抛物线与x轴的另一交点为B(1)求该抛物线的函数表达式;(2)如图2,点D是抛物线在第一象限内的一点,连接OD,将线段OD绕O逆时针旋转90得到线段OM,过点M作MNx轴交直线AC于点N求线段MN的最大值及此时点D的坐标;(3)在(2)的条件下,若点E是点A关于y轴的对称点,连接DE,试探究在抛物线上是否存在点P,使得PED45?若存在,求出点P的坐标;若不存在,请说明理由14如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经

7、过A、C两点,与x轴的另一交点为点B(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,连接BC、CD,设直线BD交线段AC于点E,求的最大值;过点D作DFAC,垂足为点F,连接CD,是否存在点D,使得CDF中的DCF2BAC,若存在,求出点D的坐标;若不存在,请说明理由15如图,已知,抛物线经过A、B两点,交y轴于点C点P是第一象限内抛物线上的一点,点P的横坐标为m过点P作轴,垂足为点M,PM交BC于点Q过点P作,垂足为点N(1)求抛物线的函数表达式;(2)请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)连接PC,在第一象限的抛物线上是否

8、存在点P,使得?若存在,请直接写出m的值;若不存在,请说明理由16在平面直角坐标系xOy中,已知抛物线交x轴于,两点,与y轴交于点(1)求抛物线的函数解析式;(2)如图1,点D为直线BC上方抛物线上一动点,连接AD,交BC于点E,求的最大值;(3)如图2,点P为抛物线上一动点,是否存在点P,使得2PCBOCB,若存在,请直接写出点P的坐标;若不存在,请说明理由17抛物线的顶点坐标为,与x轴交于点两点,与y轴交于点C,点M是抛物线上的动点(1)求这条抛物线的函数表达式;(2)如图1,若点M在直线BC上方抛物线上,连接AM交BC于点E,求的最大值及此时点M的坐标;(3)如图2,已知点,是否存在点M

9、,使得?若存在,求出点M的坐标;若不存在,请说明理由18如图1,在平面直角坐标系xOy中,直线yx+3与x轴、y轴分别相交于点A和点B,抛物线yax2+bx+c经过A,B两点,且其对称轴是直线x2(1)求抛物线的函数表达式;(2)设P是抛物线上一动点,若在此抛物线上,有且仅有三个点P,使ABP的面积等于定值S,请求出该定值S和这三个P点的坐标;(3)如图2,动点C,D分别在x轴上方、下方的抛物线上运动,且满足CAODAO,连接CD交x轴于点E,当点C,D运动时,CEO的度数发生变化吗?若不变,求出sinCEO的值;若变化,请求出CEO的变化范围参考答案1(1)(2)(3)存在,2(1);(2)

10、(3)或3(1)(2);4(1)(2)(3)Q点坐标为或5(1)(2)G的坐标为或(3)当时,点P的坐标为(4,5)或6(1)(2)(3)7(1)该二次函数的解析式是;(2)的面积的最大值为;点M的坐标为或8(1)(2)M点坐标为或(3)P点坐标为或或或9(1)抛物线的解析式为:;(2)不存在这样的点P,理由见解析;(3)M点坐标是或10(1)(2)(3)11(1);(2);(3)12(1)A(-1,0);B(2m+1,0);C(0,2m+1);(2)(3)13(1)(2)最大值为3;(3)存在,14(1)(2);存在,D(-2,3)15(1)(2),当时,有最大值(3)存在,16(1)(2)的最大值为(3)存在,或17(1);(2);(3)存在;或(0,3)18(1)yx24x+3(2), P(,6)或(,6)(3)不变,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 压轴专题