2022年四川省广元市昭化区九年级一诊数学试题(含答案)

上传人:有*** 文档编号:213738 上传时间:2022-05-11 格式:DOCX 页数:12 大小:2.79MB
下载 相关 举报
2022年四川省广元市昭化区九年级一诊数学试题(含答案)_第1页
第1页 / 共12页
2022年四川省广元市昭化区九年级一诊数学试题(含答案)_第2页
第2页 / 共12页
2022年四川省广元市昭化区九年级一诊数学试题(含答案)_第3页
第3页 / 共12页
2022年四川省广元市昭化区九年级一诊数学试题(含答案)_第4页
第4页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、 20222022 年四川省广元市昭化区九年级一诊数学试题年四川省广元市昭化区九年级一诊数学试题 一、一、选择题(本大题共选择题(本大题共 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分) 1. 计算 l-6l-1 的最后结果是( ) A.-5 B.5 C.-7 D.7 2.在北京冬奥会举办之前,北京冬奥会组委曾面向全球征集 2022 年冬奥会会徽和冬残奥会会徽设计方案,共收到设计方案 4506 件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( ) 3.下列运算正确的是( ) A.(a-b)2=a2-b2 B.a-a=a C.a6a=a2 D.(-2a)2=4a

2、6 4.有一组从小到大排列的数据2,4,x,8.下列关于这组数据的结论中,一定正确的是( ) A.中位数是 4 B.众数是 4 C.平均数是 4 D.方差是 4 5.下列选项中的尺规作图,能推出 PA=PC 的是( ) 6.下列命题是真命题的是( ) A.若 ab=0,则 P(a,b)为坐标原点 B.在同一平面内,已知直线 ab,直线 bc,则直线 ac C.对角线相等的四边形是矩形 D.斜边相等的两个等腰直角三角形全等 7.如图,聪聪用一张半径为 6cm、圆心角为 120的扇形纸片做成一个圆锥,则这个圆锥的高为( ) A.42 cm B.2 2cm C.23 cm D. 3cm 8.在平面直

3、角坐标系中,将二次函数 y=-x+2x+3 的图象在 x 轴上方的部分沿 x 轴向下翻折后,得到新的函数图象.若直线 y=m 与新的函数图象有 4 个公共点,则 m 的取值范围是( ) A.m0 B.0m4 C.-4m0 D.-4m0 9.如图,在ABCD 中,AB0)的图象分别与边 AB,BC 相交于点 E,F,且 E,F 分别为边 AB,BC 的中点,连接 EF.若BEF 的面积为 6,则 k 的值是 15.如图, AB 为O 的直径, 点 P 在 AB 的延长线上, PC, PD 分别与0 相切于点 C, D, 连接 AC, AD.若 AB=6,PC=4,则 cos CAD= 16.如图

4、,在边长为 1 的正方形 ABCD 中,对角线 AC,BD 相交于点 O,E,F 分别是 AB,BC 的中点,连接CE 交 BD 于点 G, 连接 DF, OF, GF, OE.给出以下四个结论CEDF;OC+OF=G+GF;BFG-BDF=45;SBFG=121,其中正确的是 (填序号). 三、解答题(本大题共三、解答题(本大题共 10 小题,共小题,共 96 分分.) 17.(6 分)解方程3751813xx 18.(8 分)先化简,再求值(baabbaba222)abba其中 a=3+2,b=3-2. 19.(8 分)如图,在菱形 ABCD 中,BECD 于点 E,交 AD 的延长线于点

5、 G,DFBC 于点 F. (1)求证BF=DE; (2)若A=45,AB=2,求 DG 的长. 20. (9 分)某公司计划购买 A,B 两种型号的打印机共 20 台,通过市场调研发现,购买 3 台 A 型打印机和4 台 B 型打印机共需 6180 元, ,购买 4 台 A 型打印机和 6 台 B 型打印机共需 8840 元. (1)A,B 两种型号打印机的单价分别是多少元? (2)根据公司实际情况,要求购买 A 型打印机的数量不超过 B 型打印机的一半,且购买这两种型号打印机的总费用不能超过 17800 元,该公司有哪几种购买方案? 21.(9 分)为了传承中华优秀传统文化,某中学团委决定

6、开展文化润校系列活动,其中参加经典诵读比赛的共 50 人,赛后对学生此项活动的成绩(满分 100 分)进行整理,得到下列不完整的统计图表. 请根据所给信息,解答下列问题. (1)表中 a=_b=_. (2)请计算扇形统计图中 B 组对应扇形的圆心角度数. (3)若在 D 组的 4 名同学(2 男 2 女)中,随机抽取 2 名同学外出参加活动,请用列表或画树状图的方法 求出恰好抽到两名男同学的概率. 22.(10 分)图 1 为某大型商场的自动扶梯,图 2 中的 AB 为从一楼到二楼的扶梯的侧面示意图.小明站在扶梯起点 A 处时,测得天花板上日光灯 C 的仰角为 37,此时他的眼睛 D 与地面

7、MN 的距离 AD=1.8 m,之后他沿一楼扶梯到达顶端 B 后又沿 BL(BL/MN)向正前方走了 2m,发现日光灯 C 刚好在他的正上方.已知自动扶梯 AB 的坡度为 12.4,AB=13m. (1)求一楼扶梯顶端 B 到一楼地面的高度; (2)求日光灯 C 到一楼地面的高度.(结果保留一位小数) (参考数据sin 370.60,cos 370.80,tan 370.75) 23.(10 分)如图,直线 y=-21x+b 分别与 x 轴、y 轴相交于 A,B 两点,反比例函数 y=xk(x0) 图象与直线 AB 相交于 C(2,n) ,D 两点,且 tanBOC=21 (1)求直线 AB

8、及反比例函数的解析式; (2)若 x 轴上有一点 P,使ODP=90,求点 P 的坐标 24.(10 分)如图,已知 AB 是O 的直径,C 为O 上一点,OCB 的平分线交O 于点 D,点 F 在 AB 的延长线上,且 DFCB 的延长线于点 E,连接 AD,BD. (1)求证DF 是O 的切线; (2)若 tan A=21,O 的半径为 3,求 EF 的长. 25. (12 分) (1)如图 1,在ABC 中,ACB=90,直线 l 过点 C,分别过 A,B 两点作 AEl,BDl,垂足分别为 E,D. 求证(1)BDCCEA. (2) 如图 2, 在ABC 中, ACB=90, D 是

9、BC 上一点, 连接 AD, 过点 D 作 DEAD 交 AB 于点 E.若 BE=DE,tan BAD=54,AC=20,求 BD 的长. (3)如图 3,在ABCD 中,在 BC 上取点 E,使得AED=90.若 AB=AE,34ECBE,CD=14, 求ABCD 的面积. 26. (14 分)如图,在平面直角坐标系中,四边形 ABCD 为正方形,点 A,B 在 x 轴上,抛物线 y=x+bx+c经过 B,D(-4,5)两点,且与直线 DC 交于另一点 E. (1)求抛物线的解析式. (2)F 为抛物线对称轴上一点,Q 为平面直角坐标系中的一点,求当四边形 QFBE 为菱形时点 F 的坐标. (3)P 为 y 轴上一点,过点 P 作抛物线对称轴的垂线,垂足为 M,连接 ME,BP,探究 EM+MP+ PB 是否存在最小值.若存在,请求出这个最小值及点 M 的坐标;若不存在,请说明理由.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 第一次模拟