《3.1.用树状图或表格求概率(第2课时)利用概率判断游戏的公平性》同步练习(含答案)

上传人:好样****8 文档编号:19270 上传时间:2018-10-09 格式:DOCX 页数:11 大小:779.25KB
下载 相关 举报
《3.1.用树状图或表格求概率(第2课时)利用概率判断游戏的公平性》同步练习(含答案)_第1页
第1页 / 共11页
《3.1.用树状图或表格求概率(第2课时)利用概率判断游戏的公平性》同步练习(含答案)_第2页
第2页 / 共11页
《3.1.用树状图或表格求概率(第2课时)利用概率判断游戏的公平性》同步练习(含答案)_第3页
第3页 / 共11页
《3.1.用树状图或表格求概率(第2课时)利用概率判断游戏的公平性》同步练习(含答案)_第4页
第4页 / 共11页
《3.1.用树状图或表格求概率(第2课时)利用概率判断游戏的公平性》同步练习(含答案)_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、第 2 课时 利用概率判断游戏的公平性关键问答如何判断游戏的公平性?1 甲、乙两人用 2 张红心扑克牌和 1 张黑桃扑克牌做游戏,规则是:甲、乙各抽取一张,若两张牌是同一花色,则甲胜;若两张牌花色不同,则乙胜这个游戏公平吗?答:_2把五张大小相同且分别写有 1,2,3,4,5 的卡片放在一个暗箱中,由甲随机从里面无放回地抽取两张,并记下两个数字之和,若两数字之和为偶数,则甲胜;若两数字之和为奇数,则乙胜甲、乙获胜的概率分别为_命题点 事件公平性的判断 热度:90%3小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字 1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字

2、后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,若和为奇数,则小明胜;若和为偶数,则小亮胜获胜概率大的是( )A小明 B小亮 C两人一样 D无法确定4在不透明塑料袋里装有一个白色的乒乓球和两个黄色的乒乓球小明一次从袋里摸出两个球;小刚左手从袋里摸出一个球,然后右手从袋里摸出一个球;小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球摸出的两个球都是黄色的获胜你认为这个游戏( )A不公平,对小明有利 B公平C不公平,对小刚有利 D不公平,对小华有利5 2017营口如图 312 ,有四张背面完全相同的纸牌 A,B ,C,D,其正面分别画有四个不同的几何图形,将

3、这四张纸牌背面朝上洗匀图 312(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌 ,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或画树状图法) 说明理由(纸牌用A,B , C,D 表示 )解题突破题干中的“不放回”说明了什么?在分析时应注意什么?6 2017贺州 在植树节期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字 1,2,3,4 的四个和标有数字1,2,3 的三个完全

4、相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于 6,那么小王去,否则就是小李去(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平 ”你认同他的说法吗?请说明理由方法点拨游戏是否公平,关键是看游戏双方获胜的概率是否相等7 小敏的爸爸买了一张某项体育比赛的门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字分别为 2,3,5,9的四张牌给了小敏,将数字分别为 4,6,7,8 的四张牌留给自己,并按如下规则做游戏:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌的数字相加,若和为偶数,则小敏去

5、;若和为奇数,则哥哥去(1)请用画树状图或列表的方法求小敏去看比赛的概率(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平 ,请你设计一种公平的游戏规则方法点拨修改规则,使游戏变得公平的问题,对于概率不同的问题,可以通过修改事件来达到概率相同的目的,对于得分问题,既可以通过修改事件,又可以通过修改得分规则来达到目的82017山西模拟 小明一家人春节期间参与了“支付宝集五福”活动,小明和姐姐都缺一个“敬业福” ,恰巧爸爸有一个可以送给其中一个人,两个人各设计了一个游戏,获胜者可得到“敬业福” ,请用适当的方法说明这两个游戏对小明和姐姐是否公平在一个不透明盒子里放入标号分别为 1,2,3

6、,4,5,6 的六个小球,这些小球除了标号数字不同外其余都相同,将小球摇匀游戏 1 的规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数的小球,则判小明获胜,否则,判姐姐获胜游戏 2 的规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒子中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜9 甲、乙两人所持口袋中均装有三张除所标数值不同外其他完全相同的卡片,甲袋中的三张卡片上所标数值分别为 0,1,3,乙袋中的三张卡片上所标数值分别为5,2,7,甲、乙两人均从自己的口袋

7、中任取一张卡片,并将它们的数值分别记为 m,n.(1)请你用画树状图或列表的方法列出所有可能的结果;(2)现制定这样一个游戏规则:若选出的 m,n 能使得方程 x2mxn0 有实数根,则称甲胜;否则称乙胜请问这样的游戏规则公平吗?请你用概率知识解释易错警示(1)不要混淆 m,n 的取值; (2)当关于 x 的一元二次方程 ax2bxc0( a0)有实数根时,b 24ac 0.10 在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传到另一人就记为踢一次(1)若从小丽开始,经过两次踢毽后,毽子踢到小华处的概率是多少 (用画树状图或列表的方法说明)?(2)若经过三次踢毽后,毽子踢到小

8、王处的可能性最小,请确定毽子是从谁开始踢的 ,并说明理由图 313解题突破从小丽开始,第一次踢毽,毽子能踢给哪些人?第二次踢毽,毽子又能踢给哪些人?11 “手心、手背”是在同学中广为流传的游戏游戏时,甲、乙、丙三方每次出“手心” “手背”两种手势中的一种,规定:出现三个相同的手势不分胜负,继续比赛;出现一个“手心”和两个“手背”或者出现一个“手背”和两个“手心”时,则出一种手势者为胜,两种相同手势者为负(1)假定甲、乙、丙三人每次都是等可能地出“手心”或“ 手背” ,请用画树状图或列表的方法求甲、乙、丙三位同学获胜的概率(2)若甲同学只出“手背” ,乙、丙两位同学仍随机地出“ 手心”或“手背”

9、 ,则甲同学获胜的可能性会减小吗?为什么?解题突破第(1)小问和第(2) 小问的限制条件有什么不一样?用画树状图法简单还是用列表法简单?详解详析【关键问答】判断游戏的公平性就是要计算每个参与者取胜的概率,概率相等就公平,否则就不公平1不公平 解析 列表如下:甲 乙 红 1 红 2 黑红 1 红 1,红 1 红 1,红 2 红 1,黑红 2 红 2,红 1 红 2,红 2 红 2,黑黑 黑 ,红 1 黑 ,红 2 黑,黑共有 9 种等可能的情况,两张牌是同一花色的有 5 种情况,两张牌花色不同的有 4 种情况,甲获胜的概率为 ,乙获胜的概率为 ,59 49 ,5949故甲获胜的概率大,即游戏不公

10、平故答案为:不公平2. , 解析 根据题意,画树状图如下:25 35由树状图可知,共有 20 种等可能的结果,其中两数字之和为偶数的结果有 8 种,两数字之和为偶数的概率为 ,两数字之和为奇数的概率为 .820 25 35甲获胜的概率为 ,乙获胜的概率为 .25 353B 解析 画树状图如下:共有 9 种等可能的情况,其中和为偶数的有 5 种,所以小亮胜的概率是 ,那么小明胜59的概率是 ,所以获胜概率大的是小亮494D 解析 小明一次从袋里摸出两个球,则摸出的两个球都是黄色的可能性是 ;13小刚左手从袋里摸出一个球,然后右手从袋里摸出一个球,两个球都是黄色的可能性为 ;13小华先从袋里摸出一

11、个球看一下颜色,又放回袋里,再从袋里摸出一个球,两个球都是黄色的可能性为 .4913所以小华获胜的可能性大,这个游戏不公平,对小华有利故选 D.5解:(1)因为共有 4 张牌,牌面图形是中心对称图形的情况有 3 种,所以摸出的牌面图形是中心对称图形的概率是 .34(2)这个游戏公平理由:列表如下:小亮小明 A B C DA (A,B) (A,C) (A,D)B (B, A) (B,C) (B, D)C (C, A) (C,B) (C, D)D (D,A) (D,B) (D,C)共有 12 种结果,每种结果出现的可能性相同,其中两张牌面图形都是轴对称图形的有 6 种,P(两张牌面图形都是轴对称图

12、形) ,12因此这个游戏公平6解:(1)画树状图如图:共有 12 种等可能的结果数,其中摸出的球上的数字之和小于 6 的情况有 9 种,P(小王去) .34(2)认同理由如下:P(小王去) , P(小李去) , ,这种规则不公平34 14 34 147解:(1)根据题意,可以画出如下树状图:或者,根据题意也可以列出下表:小敏哥哥 2 3 5 94 (4,2) (4,3) (4,5) (4,9)6 (6,2) (6,3) (6,5) (6,9)7 (7,2) (7,3) (7,5) (7,9)8 (8,2) (8,3) (8,5) (8,9)从树状图(或表格)可以看出,所有可能出现的结果共有 1

13、6 个,这些结果出现的可能性相等而和为偶数的结果共有 6 个,所以小敏去看比赛的概率为 .616 38(2)由(1)知小敏去看比赛的概率为 ,哥哥去看比赛的概率为 1 .38 38 58因为 ,所以哥哥设计的游戏规则不公平38 58公平的游戏规则如下:若数字之和小于或等于 10,则小敏(哥哥) 去,若数字之和大于或等于 11,则哥哥(小敏)去,这样两人去看比赛的概率都为 ,那么游戏规则就是公平的12或者:如果将八张牌中的 2,3,4,5 四张牌给小敏,而余下的 6,7,8,9 四张牌给哥哥,则和为偶数或奇数的概率都为 ,那么游戏规则也是公平的(只要满足两人手中数12字为偶数或奇数的牌的张数相等

14、即可)8解:游戏 1:共有 6 种等可能的结果,一次摸到小球的标号数字为奇数或为偶数的情况各有 3 种,小明获胜的概率为 ,姐姐获胜的概率为 ,36 12 36 12游戏 1 对小明和姐姐是公平的;游戏 2:画树状图如下:共有 36 种等可能的结果,其中两次摸到小球的标号数字同为奇数或同为偶数的结果有18 种,两次摸到小球的标号数字为一奇一偶的结果也有 18 种,小明获胜的概率为 ,姐姐获胜的概率为 ,游戏 2 对小明和姐姐是公平的1836 12 1836 129解:(1)画树状图如下:(m,n) 的可能结果有 (0,5),(0,2) ,(0,7) ,(1,5),( 1,2),(1,7) ,(

15、3,5),(3 , 2),(3,7),(m,n) 的取值结果共有 9 种(2)(m ,n) 的可能结果有(0,5),(0 ,2),(0,7) ,(1,5) ,(1,2),( 1,7),(3,5),(3 , 2),(3,7),当 m0,n5 时, m24n200,此时方程 x2mxn0 有两个不相等的实数根;当 m0,n2 时, m 24n80,此时方程 x2mxn0 没有实数根;当 m0,n7 时, m 24n280,此时方程 x2mxn0 没有实数根;当 m1,n5 时, m24n210,此时方程 x2mxn0 有两个不相等的实数根;当 m1,n2 时, m 24n70,此时方程 x2mxn

16、0 没有实数根;当 m1,n7 时, m 24n270,此时方程 x2mxn0 没有实数根;当 m3,n5 时, m 24n290,此时方程 x2mxn0 有两个不相等的实数根;当 m3,n2 时, m 24n10,此时方程 x2mxn0 有两个不相等的实数根;当 m3,n7 时, m 24n190,此时方程 x2mxn0 没有实数根;P(甲获胜) ,P(乙获胜) ,49 59P(甲获胜) P(乙获胜),这样的游戏规则不公平10解:(1)画树状图如下:由树状图可知,经过两次踢毽后,毽子踢到小华处的概率是 .14或列表如下:第二次第一次 小丽 小王 小华小王 (小王,小丽) (小王,小华)小华 (小华,小丽) (小华,小王)由上表可知,毽子踢到小华处的概率是 .14(2)毽子是从小王开始踢的理由:画树状图如下:若从小王开始踢,三次踢毽后,毽子踢到小王处的概率是 ,踢到其他两人处的概率都14是 ,因此,毽子踢到小王处的可能性最小3811解:(1)画树状图如下:一共有 8 种结果,每种结果出现的可能性相等,其中甲、乙、丙三位同学获胜的情况各有 2 种,P(甲获胜) P(乙获胜)P(丙获胜) .28 14(2)甲同学获胜的可能性不会减小理由:画树状图如下:一共有 4 种情况,每种情况出现的可能性相等,其中甲获胜的情况有 1 种,甲获胜的概率仍为 ,可能性不会减小 14

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 北师大版 > 九年级上册