1、20202021 学年度九年级第一学期期末检测数学试卷学年度九年级第一学期期末检测数学试卷 注意事项: 1本试卷分为第一部分(选择题)和第二部分(非选择题) 全卷共 120 分考试时间为 120 分钟 2答卷前,请将自己的姓名、准考证号、试卷类型(A 或 B)用 2B 铅笔和 05 毫米黑色墨水签字笔准确 涂写在答题纸上 3当你选出第一部分每题的答案后,请用 2B 铅笔把答题纸上对应题号的答案标号涂黑如需改动,请用 橡皮擦干净后,再选涂其他答案标号 4第二部分答案用 05 毫米黑色墨水签字笔写在答题纸上 第一部分(选择题第一部分(选择题 共共 30 分)分) 一、选择题(共一、选择题(共 10
2、 小题,每小题小题,每小题 3 分,计分,计 30 分分每小题只有一个选项是符合题目要求的)每小题只有一个选项是符合题目要求的) 1如图所示,该几何体的俯视图是( ) A B C D 2解方程 2 630 xx,可用配方法将其变形为( ) A 2 (3)3x B 2 (3)6x C 2 (3)3x D 2 (6)3x 3如图,菱形ABCD中,50A ,则ADB的度数为( ) A65 B55 C45 D25 4若点2,Am在反比例函数 2 y x 的图象上,则m的值是( ) A 1 4 B 1 4 C1 D1 5在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充
3、分搅匀 后, 任意摸出一个球记下颜色再放回袋子通过大量重复试验后, 发现摸到白球的频率稳定在0.25左右, 则a 的值约为( ) A24 B20 C15 D10 6在Rt ABC和Rt DEF中,90CF,要使Rt ABC和Rt DEF相似,只要( ) A BCAB DEEF B ABBC DFDE CAB DEBC EF D ABBC DEEF 7如图,ABC的顶点都是正方形网格中的格点,则cos ABC等于( ) A 5 5 B 2 5 5 C5 D 2 3 8某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5 亿人民币,若每年投资的增长率相同,
4、预计2021年投资额达到y亿元人民币,设每年投资的增长率为x, 则可得( ) A5(12 )yx B 2 5yx C 2 5 1yx D 2 5 1yx 9函数ykxk与0 k yk x 在同一坐标系内的图象可能是( ) A B C D 10 如图, 在矩形ABCD中,6AD, 对角线AC与BD相交于点O,AEBD, 垂足为E,3DEBE 则 AE的长为( ) A2 3 B3 C3 3 D 3 3 2 第二部分(非选择题第二部分(非选择题 共共 90 分)分) 二、填空题(共二、填空题(共 4 小题,每小题小题,每小题 3 分,计分,计 12 分)分) 11如果方程 2 20 xxm的一个根是
5、1,则m_ 12 若ABCDEF, 且ABC与DEF的面积之比为1:3, 则ABC与DEF的相似比为_ 13 如图, 在平面直角坐标系xOy中, 点A在函数 4 0yx x 的图象上,ACx轴于点C, 连接OA, 则OAC面积为_ 14 如图, 在菱形纸片ABCD中,4AB ,60A , 将菱形纸片翻折, 使点A落在CD边的中点E处, 折痕为FG,点F、G分别在边AB、AD上,则GE _ 三、解答题(共三、解答题(共 11 小题,计小题,计 78 分。解答应写出过程)分。解答应写出过程) 15计算: 2 3tan302sin60cos 45 16解方程: 2 4210 xx 17如图,在ABC
6、中,90A ,在BC边上利用尺规求作一点P使得APBBAC (保留作图痕 迹,不写作法) 18如图,点E在矩形ABCD的边BC上,延长EB到点F,使BFCE,连接AF 求证:ADEF 19科技改变生活,手机导航极大地方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后, 导航显示车辆应沿北偏西60方向行驶8千米至B地, 再沿北偏东45方向行驶一段距离到达古镇C, 小明 发现古镇C恰好在A地的正北方向,求B,C两地的距离 (结果保留根号) 20如图,小华和同伴在游玩期间,发现在某地小山坡的点E处有颗梅花树,他想利用平面镜测量的方式 计算一下梅花树到山脚下的距离,即DE的长度,小华站在点B
7、的位置,让同伴移动平面镜至点C处,此 时小华在平面镜内可以看到点E, 且3BC 米,11.5CD米,120CDE, 已知小华的身高AB为2 米,请你利用以上的数据求出DE的长度 (结果保留根号) 21某超市以20元/千克的进货价购进了一批绿色食品,如果以30元/千克销售这些绿色食品,那么每天 可售出400千克由销售经验可知,每天的销售量y(千克)与销售单价x(元)30 x存在如图所示 的一次函数关系 (1)试求出y与x的函数表达式; (2)若要保证超市这批绿色食品每天盈利4500元,那么销售单价应为多少元? 22小亮和小丽进行摸球试验他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球
8、,共 四个小球这些小球除颜色外其他都相同,试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球, 记下颜色后放回,称为摸球一次 (1)小亮随机摸球1次,求摸出红球的概率; (2)若小丽打算随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球没有红球的概率 23如图,在四边形ABCD中,BD为一条对角线,/ADBC,2ADBC,90ABD,E为AD 的中点,连接BE (1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分BAD,1BC ,求AC的长 24如图,一次函数 1 ymxn与反比例函数 2 0 k yx x 的图象分别交于点,4A a和点8,1B,与 坐标轴分别交于点C和
9、点D (1)求一次函数与反比例函数的表达式; (2)在x轴上是否存在点P,使COD与ADP相似,若存在,求出点P的坐标;若不存在,请说明理 由 25如图,点E为正方形ABCD内一点,90AEB,将Rt ABE绕点B按顺时针方向旋转90,得 到CBE延长AE交 CE 于点F,连接DE 图图 图图 【观察猜想】 (1)直接写出四边形BE FE的形状是_; 【数学思考】 (2)如图,若DADE,判断线段CF与 FE 的数量关系并加以证明; 【解决问题】 (3)如图,若15AB,3CF ,求DE的长度 20202021 学年度九年级第一学期期末检测学年度九年级第一学期期末检测 参考答案及评分标准参考答
10、案及评分标准 数学试卷数学试卷 一、选择题(共一、选择题(共 10 小题,每小题小题,每小题 3 分,计分,计 30 分分每小题只有一个选项是符合题目要求的)每小题只有一个选项是符合题目要求的) 1-5:CBADA 6-10:DBCAB 二、填空题(共二、填空题(共 4 小题,每小题小题,每小题 3 分,计分,计 12 分)分) 111 121:3 132 142.8 三、解答题(共三、解答题(共 11 小题,计小题,计 78 分,解答应写出过程)分,解答应写出过程) 15解: 2 3tan302sin60cos 45 2 332 32 322 1 33 2 1 2 16解: 2 4210 x
11、x, (7)(3)0 xx, 则70 x或30 x , 解得 1 7x , 2 3x 17解:如答图所示,点P即为所求 18证明:四边形ABCD是矩形, ADBC EFBFBE,BCCEBE,BFCE ADEF 19解:如答图所示,过B作BDAC于点D 在Rt ABD中, 3 sin84 3 2 BDABBAD (千米) 在BCD中,45CBD, BCD是等腰直角三角形 4 3CDBD(千米) 24 6 sin45 BD BCBD (千米) 故B,C两地的距离是4 6千米 20解:如答图所示,过E作EFBC于点F 120CDE, 60EDF 设DF为x米,2DEx米,3EFx米, 90BEFC
12、 ,ACBECD, ABCEFC ABEF BCFC 即 23 311.5 x x 解得3 32x ,则26 34DEx DE的长度为 6 34米 21解: (1)设y与x的函数关系式为ykxb, 由题意得 30400 40200 kb kb 解得 20 1000 k b 即y与x的函数关系式是201000 3050yxx (2)根据题意得4500(20)(20)( 201000)xyxx 2 20140020000 xx , 整理得 2 7012250 xx 解得 12 35xx 即当销售单价为35元/千克时,每天可获得利润4500元 22解: (1)小亮随机摸球1次,摸出红球的概率 21
13、42 (2)画状图得: 共有16种等可能的结果,这两次摸出的球没有红球的有4种情况 这两次摸出的球没有红球的概率为 41 164 23 (1)证明:2ADBC,E为AD的中点, DEBC /ADBC 四边形BCDE是平行四边形 90ABD,AEDE, BEDE 则四边形BCDE是菱形 (2)解:如答图所示, 连接AC /ADBC,AC平分BAD, BACDACBCA 1ABBC 22ADBC 2ADAB 在Rt ABD中,30ADB 30DAC,60ADC,90ACD 在Rt ACD中 2AD , 1CD,3AC 24解: (1)把8,1B代入反比例函数 2 k y x 得8k 反比例函数的表
14、达式为 2 8 y x 点,4A a在 2 8 y x 图象上, 2a ,即2,4A 把2,4A,8,1B两点代入 1 ymxn, 解得 1 2 m ,5n 所以一次函数的表达式为 1 1 5 2 yx (2)由(1)得一次函数的表达式为 1 1 5 2 yx 当0 x 时,5y , 0,5C 即5OC 当0y 时,10 x D点坐标为10,0, 即10OD 5 5CD 2,4A 4 5AD 设P点坐标为,0b,由题可以,点P在点D侧,则10PDb 由CDOADP可得 当CODAPD时, ADPD CDOD 4 510 105 5 b 解得2b 故点P坐标为2,0 当CODPAD时, ADPD
15、 ODCD 4 510 105 5 b , 解得0b 即点P的坐标为0,0 因此,点P的坐标为2,0或0,0时,COD与ADP相似 25解: (1)正方形 (2)CFEF 理由如下:如答图,过点D作DHAE于点H DADE,DHAE, 1 2 AHAE 90ADHDAH 四边形ABCD是正方形, ADAB,90DAB 90DAHEAB ADHEAB 又ADAB,90AHDAEB, ()ADHBAE AAS 1 2 AHBEAE 将Rt ABE绕点B按顺时针方向旋转90 AE CE 四边形BE FE是正方形, BE E F 1 2 E FCE CFEF 图 (3)如答图,过点D作DHAE于点H 四边形BE FE是正方形, BEE FBE 15ABBC,3CF , 222 BCE BE C 2 2 2253E BE B 9EB,9BE 12CECFEF 由(2)可知:9BEAH,12DHAE CE , 3HE 22 14493 17DEDHHE 图