第10讲 平面直角坐标系与函数(教师版) 备战2021中考数学专题复习分项提升

上传人:hua****011 文档编号:163637 上传时间:2020-12-10 格式:DOC 页数:13 大小:1.22MB
下载 相关 举报
第10讲 平面直角坐标系与函数(教师版) 备战2021中考数学专题复习分项提升_第1页
第1页 / 共13页
第10讲 平面直角坐标系与函数(教师版) 备战2021中考数学专题复习分项提升_第2页
第2页 / 共13页
第10讲 平面直角坐标系与函数(教师版) 备战2021中考数学专题复习分项提升_第3页
第3页 / 共13页
第10讲 平面直角坐标系与函数(教师版) 备战2021中考数学专题复习分项提升_第4页
第4页 / 共13页
第10讲 平面直角坐标系与函数(教师版) 备战2021中考数学专题复习分项提升_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、 1 第第 1010 讲讲 平面直角坐标系与函数平面直角坐标系与函数 1平面直角坐标系中点坐标的特征 注意:坐标轴不属于任何象限 2对称点坐标的规律 (1)坐标平面内,点 P(x,y)关于 x 轴(横轴)的对称点 P1的坐标为(x,y); (2)坐标平面内,点 P(x,y)关于 y 轴(纵轴)的对称点 P2的坐标为(x,y); (3)坐标平面内,点 P(x,y)关于原点的对称点 P3的坐标为(x,y) 口诀记忆:关于谁轴对称谁不变,关于原点对称都要变 3平移前后,点的坐标的变化规律 (1)点(x,y)左移 a 个单位长度:(xa,y); (2)点(x,y)右移 a 个单位长度:(xa,y);

2、(3)点(x,y)上移 a 个单位长度:(x,ya); (4)点(x,y)下移 a 个单位长度:(x,ya) 口诀记忆:正向右负向左,正向上负向下 4点坐标到坐标轴及原点的距离 (1)点 P(a,b)到 x 轴的距离为|b|; (2)点 P(a,b)到 y 轴的距离为|a| ; (3)点 P(a,b)到原点的距离为 a 2b2. 5常量、变量 在某一过程中,保持数值不变的量叫做常量;可以取不同数值的量叫做变量 6函数 一般地,设在一个变化过程中有两个变量 x 与 y,如果对于 x 的每一个确定的值,y 都有唯一确定的值与它 2 对应,那么就说 x 是自变量,y 是 x 的函数 7函数自变量的取

3、值范围 整式型:自变量取全体实数; 分式型:自变量取值要使分母不为 0; 二次根式型:自变量取值要使被开方数大于等于 0.对于具有实际意义的函数,自变量取值范围还应使实 际问题有意义 8函数的表示方法及图象: (1)函数的三种表示方法:列表法;图象法;解析式法 (2)函数图象的画法: 描点法画函数图象的步骤:列表、描点、连线 画函数图象时应注意该函数的自变量的取值范围. 考点 1: 直角坐标系与点坐标 【例题 1】(2018港南区一模)在平面直角坐标系中,点 P(2,x 2+1)所在的象限是( ) A第一象限 B第二象限 C第三象限 D第四象限 【解析】根据非负数的性质确定出点 P 的纵坐标是

4、正数,然后根据各象限内点的坐标特征解答 x 20, x 2+11, 点 P(2,x 2+1)在第二象限 故选:B 归纳:考查通过作坐标系确定点的位置,关键是根据题中所给坐标画出适当的坐标系,再根据所求点在坐 标系中的位置求出点坐标即可 考点 2: 坐标与变换 【例题 2】 (2018 海南) (3.00 分)如图,在平面直角坐标系中,ABC 位于第一象限,点 A 的坐标是(4, 3) ,把ABC 向左平移 6 个单位长度,得到A1B1C1,则点 B1的坐标是( ) 3 A (2,3) B (3,1) C (3,1) D (5,2) 【解析】根据点的平移的规律:向左平移 a 个单位,坐标 P(x

5、,y)P(xa,y) ,据此求解可得 点 B 的坐标为(3,1) , 向左平移 6 个单位后,点 B1的坐标(3,1) , 故选:C 归纳:采用列表、绘图、对比等方法来感知图形变换与坐标之间的关系,平移问题就可利用坐标平面内图 形左、右或上、下平移后对应点的坐标关系来解决本类题主要考查坐标与图形的变化平移,解题的关 键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减 考点 3: 关于坐标的规律探究 【例题 3】 (2019湖北天门3 分)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,都是 菱形,点A1,A2,A3,都在x轴上,点C1

6、,C2,C3,都在直线y 3 3 x+ 3 3 上,且C1OA1C2A1A2 C3A2A360,OA11,则点C6的坐标是 (97,323) 【分析】 根据菱形的边长求得A1.A2.A3的坐标然后分别表示出C1.C2.C3的坐标找出规律进而求得C6的坐标 【解答】解:OA11, OC11, C1OA1C2A1A2C3A2A360, C1的纵坐标为:sin60OC1 3 2 ,横坐标为 cos60OC1 1 2 , 4 C1( 1 2 , 3 2 ) , 四边形OA1B1C1,A1A2B2C2,A2A3B3C3,都是菱形, A1C22,A2C34,A3C48, C2的纵坐标为:sin60A1C2

7、3,代入y 3 3 x+ 3 3 求得横坐标为 2, C2(,2,3) , C3的纵坐标为:sin60A2C343,代入y 3 3 x+ 3 3 求得横坐标为 11, C3(11,43) , C4(23,83) , C5(47,163) , C6(97,323) ; 故答案为(97,323) 考点 3: 函数图像的判断 【例题 3】(2017西宁)如图,在正方形 ABCD 中,AB3 cm,动点 M 自 A 点出发沿 AB 方向以每秒 1 cm 的 速度运动,同时动点 N 自 D 点出发沿折线 DCCB 以每秒 2 cm 的速度运动,到达 B 点时运动同时停止,设 AMN 的面积为 y(cm

8、2),运动时间为 x(s),则下列图象中能大致反映 y 与 x 之间函数关系的是(A) A B C D 【解析】 AMN 的底为 x,点 N 在线段 DC 上时,AMN 的高为 3,不变,y3 2x;点 N 在线段 CB 上时, AMN 的高为 332x62x,y1 2x(62x) 归纳:运动背景下的函数图象问题,第一,要数形结合,将运动过程与图象完全对应起来;第二,可先从 5 图象上判断自变量的取值范围是否与运动实际过程一致,然后结合图象的趋势判断是否与实际过程一致; 第三,可选取图象上的特殊点看是否符合运动过程;第四,可尝试求出函数关系式,再根据函数关系式的 类型去判断在复习时遇到判断函数

9、图象的问题时,容易想到学过的一次函数、二次函数、反比例函数, 但要注意一些分段函数及非常规的函数 一、选择题: 1. (2019广西贵港3 分)若点P(m1,5)与点Q(3,2n)关于原点成中心对称,则m+n的值是( ) A1 B3 C5 D7 【答案】C 【解答】解:点P(m1,5)与点Q(3,2n)关于原点对称, m13,2n5, 解得:m2,n7, 则m+n2+75 故选:C 2. (2018湖北省武汉3 分)点 A(2,5)关于 x 轴对称的点的坐标是( ) A (2,5) B (2,5) C (2,5) D (5,2) 【答案】A 【解答】解:点 A(2,5)关于 x 轴的对称点 B

10、 的坐标为(2,5) 故选:A 3. (2019,山东枣庄,3 分)在平面直角坐标系中,将点A(1,2)向上平移 3 个单位长度,再向左平 移 2 个单位长度,得到点A,则点A的坐标是( ) A (1,1) B (1,2) C (1,2) D (1,2) 【答案】A 【解答】解:将点A(1,2)向上平移 3 个单位长度,再向左平移 2 个单位长度,得到点A,点A 的横坐标为 121,纵坐标为2+31, A的坐标为(1,1) 故选:A 4. (2019湖北黄石3 分)如图,在平面直角坐标系中,边长为 2 的正方形ABCD的边AB在x轴上,AB边 6 的中点是坐标原点O,将正方形绕点C按逆时针方向

11、旋转 90后,点B的对应点B的坐标是( ) A (1,2) B (1,4) C (3,2) D (1,0) 【答案】C 【解答】解:如图所示, 由旋转得:CBCB2,BCB90, 四边形ABCD是正方形,且O是AB的中点, OB1, B(2+1,2) ,即B(3,2) , 故选:C 5. (2019山东潍坊3 分)如图,在矩形 ABCD 中,AB2,BC3,动点 P 沿折线 BCD 从点 B 开始运动到点 D设运动的路程为 x,ADP 的面积为 y,那么 y 与 x 之间的函数关系的图象大致是( ) ABCD 【答案】D 7 【解答】解:由题意当 0 x3 时,y3, 当 3x5 时,y 1

12、2 3(5x) 3 2 x+ 15 2 故选:D 二、填空题: 6. (2018浙江临安3 分)P(3,4)到 x 轴的距离是 【答案】4 【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,4)到 x 轴的距离是|4|=4 故答案为:4 7. 某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30),目标B的位置为(2,180),目 标C的位置为(4,240),则图中目标D的位置可记为_ 【答案】 (5,120) 【解析】由图可知,图中目标 D 的位置可记为(5,120) 故答案为: (5,120) 8. (2019 甘肃省陇南市)中国象棋是中华名族的文化瑰宝,因趣味性强,深

13、受大众喜爱如图,若在象棋棋 盘上建立平面直角坐标系,使“帅”位于点(0,2) ,“马”位于点(4,2) ,则“兵”位于点 (1, 1) 【答案】 (1,1) 【解答】解:如图所示:可得原点位置,则“兵”位于(1,1) 8 故答案为: (1,1) 9. (2018 广西贵港) (3.00 分)如图,直线 l 为 y=x,过点 A1(1,0)作 A1B1x 轴,与直线 l 交于点 B1,以原点 O 为圆心,OB1长为半径画圆弧交 x 轴于点 A2;再作 A2B2x 轴,交直线 l 于点 B2,以原点 O 为圆 心,OB2长为半径画圆弧交 x 轴于点 A3;,按此作法进行下去,则点 An的坐标为(

14、2 n1,0 ) 【答案】 (2 n1,0) 【解答】直线 l 为 y=3x,点 A1(1,0) ,A1B1x 轴, 当 x=1 时,y= 3, 即 B1(1,3) , tanA1OB1=3, A1OB1=60,A1B1O=30, OB1=2OA1=2, 以原点 O 为圆心,OB1长为半径画圆弧交 x 轴于点 A2, A2(2,0) , 同理可得,A3(4,0) ,A4(8,0) , 点 An的坐标为(2 n1,0) , 故答案为:2 n1,0 三、解答题: 9 10. (2019湖北黄石7 分)若点 P 的坐标为( 1 3 x ,2x9) ,其中x满足不等式组, 求点P所在的象限 【分析】先

15、求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限 【解答】解:, 解得:x4, 解得:x4, 则不等式组的解是:x4, 1,2x91, 点P的坐标为(1,1) , 点P在的第四象限 11. 线段 AB 在直角坐标系中的位置如图 (1)写出 A、B 两点的坐标 (2)在 y 轴上找点 C,使 BC 长度最短,写出点 C 的坐标 (3)连接 AC、BC 并求出三角形 ABC 的面积 (4)将三角形 ABC 平移,使点 B 与原点重合,画出平移后的三角形 A1B1C1 【解答】 (1)A(1,3) ,B(3,1) ; (2)C(0,1) ; (3)三角形 ABC 的面积:32=3; 1

16、0 (4)如图所示:A1B1C1即为所求 12. 在直角坐标系中,已知线段 AB,点 A 的坐标为(1,2) ,点 B 的坐标为(3,0) ,如图 1 所示 (1)平移线段 AB 到线段 CD,使点 A 的对应点为 D,点 B 的对应点为 C,若点 C 的坐标为(2,4) ,求点 D 的坐标; (2)平移线段 AB 到线段 CD,使点 C 在 y 轴的正半轴上,点 D 在第二象限内,连接 BC,BD,如图 2 所示若 SBCD=7(SBCD表示三角形 BCD 的面积) ,求点 C、D 的坐标 (3)在(2)的条件下,在 y 轴上是否存在一点 P,使=(SPCD表示三角形 PCD 的面积)?若存

17、在, 求出点 P 的坐标;若不存在,请说明理由 【分析】 (1)利用平移得性质确定出平移得单位和方向; (2)根据平移得性质,设出平移单位,根据 SBCD=7(SBCD建立方程求解,即可, (3)设出点 P 的坐标,表示出 PC 用=,建立方程求解即可 【解答】解: (1)B(3,0)平移后的对应点 C(2,4) , 设 3+a=2,0+b=4, a=5,b=4, 即:点 B 向左平移 5 个单位,再向上平移 4 个单位得到点 C(2,4) , A 点平移后的对应点 D(4,2) , 11 (2)点 C 在 y 轴上,点 D 在第二象限, 线段 AB 向左平移 3 个单位,再向上平移(2+y)

18、个单位,符合题意, C(0,2+y) ,D(2,y) , 连接 OD, SBCD=SBOC+SCODSBOD =OBOC+OC2OBy=7, y=2, C(0,4) D(2,2) ; (3)设点 P(0,m) , PC=|4m|, =, |4m|2=7, |4m|=, m=或 m=, 存在点 P,其坐标为(0,)或(0,) 13. (2019甘肃庆阳3 分)如图,在矩形ABCD中,ABAD,对角线AC,BD相交于点O,动点P由点A 出发,沿ABBCCD向点D运动设点P的运动路程为x,AOP的面积为y,y与x的函数关系图象如图 所示,则AD边的长为多少? 【分析】当P点在AB上运动时,AOP面积

19、逐渐增大,当P点到达B点时,结合图象可得AOP面积最大 为 3,得到AB与BC的积为 12;当P点在BC上运动时,AOP面积逐渐减小,当P点到达C点时,AOP 面积为 0,此时结合图象可知P点运动路径长为 7,得到AB与BC的和为 7,构造关于AB的一元二方程可求 解 【解答】解:当P点在AB上运动时,AOP面积逐渐增大,当P点到达B点时,AOP面积最大为 3 12 ABBC3,即ABBC12 当P点在BC上运动时,AOP面积逐渐减小,当P点到达C点时,AOP面积为 0,此时结合图象可知P点 运动路径长为 7, AB+BC7 则BC7AB,代入ABBC12,得AB 27AB+120,解得 AB

20、4 或 3, 因为ABAD,即ABBC, 所以AB3,BC4 14. (2018嘉兴)小红帮弟弟荡秋千(如图 1),秋千离地面的高度 h(m)与摆动时间 t(s)之间的关系 如图 2 所示 (1)根据函数的定义,请判断变量 h 是否为关于 t 的函数? (2)结合图象回答: 当 t=0.7s 时,h 的值是多少?并说明它的实际意义 秋千摆动第一个来回需多少时间? 【分析】(1)根据图象和函数的定义可以解答本题; (2)根据函数图象可以解答本题; 根据函数图象中的数据可以解答本题 【解答】(1)由图象可知, 对于每一个摆动时间 t,h 都有唯一确定的值与其对应, 变量 h 是关于 t 的函数;

21、(2)由函数图象可知, 当 t=0.7s 时,h=0.5m,它的实际意义是秋千摆动 0.7s 时,离地面的高度是 0.5m; 由图象可知, 秋千摆动第一个来回需 2.8s 13 15. (1)如图 1,梯形 ABCD 中对角线交于点 O,ABCD,请写出图中面积相等的三角形; (2)如图 2,在直角坐标系中,O 是坐标原点,点 A(2,3) ,B(2,1) 分别求三角形 ACO 和三角形 BCO 的面积及点 C 的坐标; 请利用(1)的结论解决如下问题:D 是边 OA 上一点,过点 D 作直线 DE 平分三角形 ABO 的面积,并交 AB 于点 E(要有适当的作图说明) 【解答】解: (1)ABDC, SABD=SABC,SADC=SBDC, SAOD=SBOC (2)点 A(2,3) ,B(2,1) , 直线 AB 的解析式为 y=x+2, C(0,2) SAOC=22=2,SBOC=22=2, (3)连接 CD,过点 O 作 OECD 交 AB 于点 E,连接 DE,则 DE 就是所作的线

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 一轮复习