1、数学试题卷第 1 页(共 4 页) 2020 学年第一学期九年级期中教学诊断测试 数学试题卷 亲爱的同学: 欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平答题时,请注意以下几点: 1全卷共 4 页,有三大题,24 小题全卷满分 150 分考试时间 120 分钟 2答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效 3答题前,认真阅读答题纸上的注意事项,按规定答题 祝你成功! 卷 一、选择题(本题有 10 小题,每小题 4 分,共 40 分每小题只有一个选项是正确的,不选、多选、错选, 均不给分) 1下列选项中,属于必然事件的是() A从一个只装有黑球的袋子里摸出白球B明天
2、太阳从东方升起 C掷一次普通骰子,向上的一面是 6 点D经过城市中某一有交通信号灯的路口,遇到红灯 2已知二次函数 2 (3)1yx,当 y 的值随 x 的增大而增大时,x 的取值满足() Ax1Bx1Cx3Dx3 3一个不透明的袋中,装有 3 个黄球、2 个红球和 5 个白球,它们除颜色外都相同从袋中任意摸出一个 球,是白球的概率是() A 1 5 B 3 10 C 1 3 D 1 2 4如图,点 A,B,C,D,E 在O 上,BOD120,BAC35,则CED 的 度数为() A25B30C42.5D50 5二次函数(3)(1)yxx的图象的对称轴是直线() Ax2Bx1Cx2Dx3 6已
3、知O 的半径为 3,OP2,OQ4,OR5,经过 P,Q,R 中的一点任意作直线 总是与O 相交,则这个点是() APBQCRDQ 和 R 7如图,AB 是O 的直径,弦 CD 垂直平分 OB,CD2 3,则AC的长为() A 8 3 B 4 3 C 2 3 3 D 2 3 8将抛物线 C0:y(x2)2向上平移 n 个单位后得抛物线 C1,将 C1向左平移 n 个单位后得 C2,若 C1, C2均经过点 A(3,a),且 n0,则 a 的值是() A1B2C3D9 (第 4 题) (第 7 题) 数学试题卷第 2 页(共 4 页) 9 如图, O 截ABC 三边所得的弦长相等, 若A2, 则
4、BOC 的度数为() A4B90C180D1802 10如图,在ABC 中,ACB90,BCa ,ACb,以 AB 为边向上作正方形 若阴影部分面积是ABC 面积的 4 倍,则关于 x 的二次函 数 221 ()5 20 yxab xab的图象与 x 轴() A没有交点B有 1 个交点 C有 2 个交点D交点个数由 a,b 取值决定 卷 二、填空题(本题有 6 题,每小题 5 分,共 30 分) 11已知二次函数 2 (1)2yx,当 y 取最小值时,x 的值为 12在一个不透明的袋中装有 n 个除颜色外完全相同的小球,其中有 5 个黑球,每次摸球前,将袋中所有 球摇匀, 随机摸出一个球, 记
5、下颜色后放回袋中, 通过大量重复实验, 发现摸到黑球的频率稳定在 0.05, 那么可以估计出 n 的值大约是 13 如图, 将ABC 绕直角顶点 C 顺时针旋转 90后得到ABC, 连结 BB, 若BAB110, 则ABB 度 14如图,ABC 内接于O,BD 是O 直径,若A30,BD4 3,则图中阴影部分面积为 15下表中所列的 x,y 的 7 对值是二次函数 2 yaxbxc的图象上的点所对应的坐标,其中 x1x2x3 x4x5x6x7 xx1x2x3x4x5x6x7 y 7m0n0m7 根据表中所提供的信息,有以下 4 个论断: a0; 2 4 ()ba cn0; 该函数图象的顶点坐标
6、为 4 ()xn,; 35 xx,是方程 2 0axbxc的两个实数根 其中正确论断的序号有 16如图,BC 是半圆 O 的直径,AOBC 交半圆 O 于点 A,D 是AB的中 点,CD 分别交 AO,AB 于点 E,F若 BD1,则 EF 的长为 (第 9 题) (第 13 题) (第 14 题) (第 10 题) (第 16 题) 数学试题卷第 3 页(共 4 页) 三、解答题(本题有 8 小题,共 80 分,解答需写出必要的文字说明、演算步骤或证明过程) 17(本题 8 分)运用适当方法求下列二次函数图象的顶点坐标和对称轴 (1) 2 610yxx(2) 231 5 22 yxx 18(
7、本题 8 分)有 3 张完全相同的卡片,其正面分别写有 1,2,3 (1)将卡片背面朝上洗匀后随机抽取一张,求抽到数字是偶数的卡片概率 (2)甲、乙两人准备进行抽卡片游戏甲先从这叠卡片中随机抽取一张,记下数字后放回 ,并重新 洗匀,乙再从折叠卡片中随机抽取一张,并记下数字若两人抽取的卡片上的数字均为奇数, 则判甲赢;若两人抽取的卡片上的数字为一奇一偶,则判乙赢请用列表法或树状图法说明这 个游戏对甲、乙是否公平 19(本题 8 分)如图是一个 66 的正方形网格,点 A,D 在BC上,其中 A 是格点,BD=90,连结 AC,BC请按要求画图:仅用无刻度的直尺,且不能用直尺的直角;保留必要的画图
8、痕迹; 标注相关字母 (1)在图 1 中画出AB所对的圆心角AOB (2)在图 2 中画出一个角AEF,使AEF2ACB,E,F 是格点,且在BC所在的圆上 20(本题 10 分)某志愿者小组有 4 名翻译,其中有 1 名俄、英两种语言都会翻译,其余志愿者只会翻 译俄语或英语中的一种语言从中随机挑选一名志愿者,其能翻译英语的概率为 3 4 (1)求只会翻译英语的志愿者人数 (2)若从中挑选两名志愿者组成一组,用列表法(或树状图法)求其能够翻译俄、英两种语言的概 率 21(本题 10 分)已知抛物线 2 yaxbxc上的部分点的横坐标 x 与纵坐标 y 的对应值如下表所示: x 21 012 y
9、04664 (1)求该函数的表达式 (2)利用描点法在图中画出该函数的大致图象,并根据图象直接写出 y0 时,x 的取值范围 (第 21 题) (第 19 题) 图 2图 1 数学试题卷第 4 页(共 4 页) 22 (本题 10 分)如图,在ABC 中,ABC90,D 是 AB 右侧一点,以 BD 为直径的O 分别交 AC, BC 于点 E,F (1)求证:DACC (2)连结 EF,若 BC2 3,BD4,C45,求 EF 的长 23(本题 12 分)某超市以 20 元/kg 的价格购进一批绿色食品,如果以 30 元/kg 销售,那么每天可以售 出 400kg由销售经验知,这种绿色食品销售
10、单价每提高 1 元,则每天销售量将减少 20kg设销售 单价为 x 元/kg,每天销售量为 y(kg) (1)求 y 关于 x 的函数表达式 (2)设该超市销售绿色食品每天获得利润 W 元,当销售单价为多少元时,每天可获得最大利润?最 大利润是多少? (3)为促进公益,该超市这种绿色食品销售价不大于 38 元时,每销售 1kg 这种绿色食品便向慈善机 构捐赠 m 元(1m7),捐赠后发现,该超市每天销售这种绿色食品的利润仍随销售单价的 增大而增大,请直接写出 m 的取值范围 24(本题 14 分)如图 1,已知抛物线 2 2yxxc 与 x 轴交于 A,B 两点(A 在 B 的左侧),与 y
11、轴 交于点 C(0,3),M 是线段 OB 上一动点,连结 CM (1)求 A,B 的坐标 (2)当=2CMBM时,求 OM:OC 的值 (3)如图 2,过点 M 作 x 轴的垂线,交抛物线于点 E 当点 M 运动到什么位置时,四边形 ABEC 的面积最大?求出此时 OM 的长及四边形 ABEC 的 最大面积 如图 3,在的条件下,将 CM 右侧的抛物线沿 CM 对折,交 y 轴于点 F,请直接写出点 F 的 坐标 (第 22 题) 图 1 图 2 (第 24 题) 图 3 数学参考评分标准 第 1 页(共 4 页) 2020 学年第一学期九年级期中教学诊断测试 数学卷参考评分标准 一、选择题
12、(本题有 10 小题,每小题 4 分,共 40 分每小题只有一个选项是正确的,不选、多选、错选, 均不给分) 二、填空题(本题有 6 题,每小题 5 分,共 30 分) 111, 12100, 1325, 1443 3, 15, 1622 三、解答题(本题有 8 小题,共 80 分,解答需写出必要的文字说明、演算步骤或证明过程) 17(本题 8 分,每小题 4 分) (1) 2 610yxx (2) 2 13 5 22 yxx, 2 699 10 xx a 1 2 ,b 3 2 ,c5 2 (3)1x 3 3 2 1 22 2 2 b a , 2 19 4( 5) 449 24 1 48 4
13、2 acb a 对称轴:直线 x3, 顶点坐标(3,1) 对称轴:直线 x 3 2 ,顶点坐标是 349 28 , 18(本题 8 分) (1) 1 3 P 3 分 (2)公平 1 分 列表如下: (树状图略) 由表可知: 4 ( ) 9 P甲, 4 () 9 P乙,该游戏公平 4 分 题号 1 2 3 4 5 6 7 8 9 10 答案 B D D A C A B C B C 数学参考评分标准 第 2 页(共 4 页) y xO 19(本题 8 分,每小题 4 分) (1) (2)(画出一种情况即可) 20(本题 10 分) (1) 3 41=2 4 , 只会翻译英语的有 2 人 3 分 (
14、2)一名俄语翻译分别记作 A,两名英语翻译分别记作 B,C,一名两种语言都会翻译记作 D A B C D A / (A,B) (A,C) (A,D) B (B,A) / (B,C) (B,D) C (C,A) (C,B) / (C,D) D (D,A) (D,B) (D,C) / (树状图略)5 分 由表可知:能够翻译上述两种语言的概率为 105 = 126 P2 分 21(本题 10 分) (1)抛物线经过点(0,6), 设 2 6yaxbx 将(2,0),(1,6)代入上式得 4260 66 ab ab ,解得 1 1 a b 抛物线表达式为 2 6yxx 4 分 (2)如图所示 4 分
15、由图可知,2x3 2 分 O D B C AF E B C A 数学参考评分标准 第 3 页(共 4 页) F E O D C B A 22(本题 10 分) (1)BD 是直径,BAD90ABC90,ADBC,DACC 3 分 (2)C45,ABBC2 3BD4, 22 2ADBDAB 连结 DF,BD 是直径,DFB90 四边形 ABFD 是矩形,BFAD2,FC2 32 四边形 ABFE 内接于圆,AEF90 EFEC62 7 分 23(本题 12 分) (1)40020(30)=100020yxx 3 分 (2)(20)(20)( 201000)Wxyxx 3 分 2 20(35)45
16、00 x 3 分 当销售单价为 35 元/kg 时,每天可获得最大利润,最大利润为 4500 元 (3)6m7 3 分 24(本题 14 分) (1)将 C(0,3)代入 2 2yxxc 得3c ,yx22x3 当 y0 时,x22x30,解得 1 1x , 2 3x A(1,0),B(3,0) 4 分 (2)B(3,0),C(0,3) OBOC3 设 BMa,则 CM2a,OM3a 在 RtCOM 中, 222 3(3)(2 )aa, 解得 1 71a , 2 71a (舍去) 47 3 OM OC 4 分 (3)设点 M(m,0),则 E(m,m22m3) MEm22m3 2 2 1 37
17、511 (1) 3(23) 3 2228 2 AMCCMEBME SSSSmmmm 当 3 2 OM 时,四边形 ABEC 面积最大,最大面积为 75 8 4 分 点 F 7 0 16 , 2 分 y x E BA C O M 数学参考评分标准 第 4 页(共 4 页) G F E D A OBC y x G F O F BA C O M 【附:提示】 (3)设点 O,F 关于 CM 的对称点分别为 O,F,连结 CF,则点 O在 CF上 过点 M 作 x 轴垂线交 CF于点 G,易得 COCO3,CGMG 设 GMCGx,则 GO3x 在 RtMGO中, 2 223 (3) 2 xx,解得
18、45 24 x , 点 G 3 45 2 24 ,直线 CG 的表达式为: 3 3 4 yx , 点 F 1511 4 16 ,CFCF 55 16 ,OF 7 16 ,点 F 7 0 16 , 10由题可知, 22 11 () 25 abab, 22 22 55 abab (1) 22222 111 ()4(5)21 2055 ababaabbab (2) 将(1)式代入(2)中,得 2 2 11119 1 1 2 55520 aaa 与x轴有2个交点 15:令 y0,则 2 =axbxc n,由表可知,该方程至少有 1 个解, 2 4 ()ba cn0 16延长BD交CA的延长线于点G,易证AGBAFC, BGCF2,BECE2, EF22