【秋季课程北师大版初二数学】第4讲:平方根_学案

上传人:hua****011 文档编号:157723 上传时间:2020-10-22 格式:DOCX 页数:10 大小:330.15KB
下载 相关 举报
【秋季课程北师大版初二数学】第4讲:平方根_学案_第1页
第1页 / 共10页
【秋季课程北师大版初二数学】第4讲:平方根_学案_第2页
第2页 / 共10页
【秋季课程北师大版初二数学】第4讲:平方根_学案_第3页
第3页 / 共10页
【秋季课程北师大版初二数学】第4讲:平方根_学案_第4页
第4页 / 共10页
【秋季课程北师大版初二数学】第4讲:平方根_学案_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、 平方根 通过对本节课的学习,你能够: 掌握平方根与算数平方根的概念及性质. 灵活应用平方根与算数平方根. 概 述 第 4 讲 适用学科 初中数学 适用年级 初二 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.算数平方根的概念 2.平方根的概念 3. 平方根与算数平方根的应用 教学目标 1.了解平方根与算数平方根的概念。 2.掌握平方根与算数平方根的区别与联系。 3.灵活应用平方根与算数平方根。 教学重点 平方根与算术平方根的概念、性质 教学难点 算数平方根的意义 【知识导图】【知识导图】 平方根平方根 算术平方根及性质算术平方根及性质 平方根及性质平方根及性质 概 述 前面我们

2、学习了勾股定理,请大家根据勾股定理,结合图形完成填空: 2 x , 2 y , 2 z , 2 w 能表示2 2 x,3 2 y,4 2 z,5 2 w;能求得2z,你能求得x,y,w的值 2 2 x,3 2 y,4 2 z,5 2 w,已知幂和指数,怎么求求底数呢? 我们知道:112=121 122=144 132=169 142=196 152=225 那么 1已知边长求 面积 正方形边长 正方形面积 2.已知面积求 边长 正方形边长 正方形面积 11 121 13 169 0.3 0.09 1 2 在上面思考的基础上,明晰概念: 一般地, 如果一个正数一般地, 如果一个正数x的平方等于的

3、平方等于a, 即, 即ax 2 , 那么这个正数, 那么这个正数x就叫做就叫做a的算术平方根, 记为 “的算术平方根, 记为 “a” ,” , 二、知识讲解 一、导入 考点 1 算术平方根概念及性质考 教学过程 读作“根号读作“根号a”特别地,我们规定”特别地,我们规定 0 的算术平方根是的算术平方根是 0,即,即00 由平方根的定义可知,当2 2 x,3 2 y,5 2 w,那么2x,3y,5w 由算术平方根的定义我们可知:a的算术平方根a是一个非负数;我们知道 0 =0,正数 x=a0,所以 a0. 即算术平方根定义中:a中的a是一个非负数,a的算术平方根a也是一个非负数,负数没有算术平方

4、 根这也是算术平方根的性质双重非负性 平方根的概念平方根的概念 我们知道 1 =(-1) =1, 2 =(-2) =4, 3 =(-3) =9,a =(-a) =a , 如果一个数如果一个数 x 的平方等于的平方等于 a,即即 x =a=a 。那么。那么 x 就叫做就叫做 a 的平方根。的平方根。 正数 a 的两个平方根可以用“a”表示,其中a表示 a 的正的平方根(又叫算术平方根),读作 “根号 a”; a表示 a 的负的平方根,读作“负根号 a”。 一个正数 a 的平方根有两个,记为a ,它们互为相反数。 0 的平方根是 0。 负数没有算数平方根。 求一个数 a 的平方根的运算叫做开平方,

5、a 叫做被开方数。(开平方与平方互为逆运算) 类型一 算术平方根概念及性质 例 1 求下列各数的算术平方根: (1) 900; (2) 1; (3) 64 49 ; (4) 14 【解析】 考点 2 平方根概念及性质 考点 3 开平方 三 、例题精析 【总结与反思】 例 2 自由下落物体的高度h(米)与下落时间t(秒)的关系为 2 9 . 4 th 有一铁球从 19.6 米高的建筑物上 自由下落,到达地面需要多长时间? 【解析】 【总结与反思】 例 3 01)2 2 yxy(则 xy= 【解析】 【总结与反思】 类型二 平方根及性质 1.如果 x=a,那么下列说法错误是( ) A若 x 确定,

6、则 a 的值是唯一的 B若 a 确定,则 x 的值是唯一的 Ca 是 x 的平方 Dx 是 a 的平方根 【解析】 【总结与反思】 2. a的意义是( ) Aa 的平方根 Ba 的算术平方根 C当 a0 时,a是 a 的平方根 D以上都不正确 【解析】 【总结与反思】 2.若1x+(y+2)=0,则 2018 )(yx等于( ) A1 B1 C 2018 3 D 2018 3 【解析】 【总结与反思】 类型三:利用平方根的意义求字母的值类型三:利用平方根的意义求字母的值 【例题】【例题】 1.一个正数的平方根是 2a3 与 a12,则这个正数为( ) A3 B5 C7 D49 【解析】 【总结

7、与反思】 1. 16的平方根是( ) A4 B4 C2 D2 2下列运算正确的是( ) A 2 13)( =13 B 2 6)( =6 C25 =5 D9 =3 1.若正方形的边长为 a,面积为 s,则( ) As 的平方根是 a Ba 是 s 的算术平方根 Ca= D.s= 四 、课堂运用 基础 巩固 2.4 的平方根是 ; 3 的平方根是 16的平方根是 , 2 5)( 的平方根是_ 3.若(a1)|b9|0,则 a b 的平方根是 1.已知实数 a 满足条件|2011a|+2012a=a,那么 a2011的值为( ) A2010 B2011 C2012 D2013 2用代数式表示实数 a

8、(a0)的平方根: 3观察下列各式: 3 1 2 3 1 1, 4 1 3 4 1 2, 5 1 4 5 1 3,请你找出其中规律,并将第 n (n1)个等式写出来 拔高 1.求下列各式的值: (1)44. 1; (2) 64 9 ; (3) 25 24 1 2.计算: (1)9; (2)9; (3) 16 1 ; (4)25. 0 1.已知一个正数的平方根是 m+3 和 2m-15 (1)求这个正数-是多少? (2)5m的平方根又是多少? 巩固 五 、课堂小结 六 、课后作业 2.如果xx91有意义,那么代数式|x1|+ 2 )9( x的值为( ) A.8 B.8 C.与 x 的值无关 D.无法确定 3.如果3x=2,那么(x+3)=_. 1. 若01baa,求 101100 ba的值. 2. 若054yxx,求 xy 的值. 3. 设 a、b 是有理数,且满足 2 )21 (2ba,求 b a的值 拔高

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 培训复习班资料 > 初二上