2018年广西玉林市北流市、陆川县、容县、博白县四县市联考中考数学一模试卷(含详细解答)

上传人:hua****011 文档编号:128552 上传时间:2020-03-23 格式:DOC 页数:22 大小:365.50KB
下载 相关 举报
2018年广西玉林市北流市、陆川县、容县、博白县四县市联考中考数学一模试卷(含详细解答)_第1页
第1页 / 共22页
2018年广西玉林市北流市、陆川县、容县、博白县四县市联考中考数学一模试卷(含详细解答)_第2页
第2页 / 共22页
2018年广西玉林市北流市、陆川县、容县、博白县四县市联考中考数学一模试卷(含详细解答)_第3页
第3页 / 共22页
2018年广西玉林市北流市、陆川县、容县、博白县四县市联考中考数学一模试卷(含详细解答)_第4页
第4页 / 共22页
2018年广西玉林市北流市、陆川县、容县、博白县四县市联考中考数学一模试卷(含详细解答)_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、2018 年广西玉林市北流市、陆川县、容县、博白县四县市联考年广西玉林市北流市、陆川县、容县、博白县四县市联考 中考数学一模试卷中考数学一模试卷 一、选择题(本大题共一、选择题(本大题共 12 小题,每小题小题,每小题 3 分,共分,共 36 分)分) 1 (3 分)下列各数中,最小的数是( ) A4 B3 C0 D2 2 (3 分)x1 是关于 x 的方程 2xa0 的解,则 a 的值是( ) A2 B2 C1 D1 3 (3 分)下列各图中,1 与2 互为邻补角的是( ) A B  C D 4 (3 分)近似数 5.0102精确到( ) A十分位 B个位 C十位 D百位 5 (3

2、 分)计算的结果是( ) A1 B C D 6(3 分) 如图, 该图形经过折叠可以围成一个正方体, 折好以后与 “静” 字相对的字是 ( )  A着 B沉 C应 D冷 7 (3 分)一组数据:1、2、2、3,若添加一个数据 2,则发生变化的统计量是( ) A平均数 B中位数 C众数 D方差 8 (3 分)下列命题是真命题的是( ) A如实数 a,b 满足 a2b2,则 ab  B若实数 a,b 满足 a0,b0,则 ab0  C “购买 1 张彩票就中奖”是不可能事件  第 2 页(共 22 页) D三角形的三个内角中最多有一个钝角 9 (3 分)如图

3、,A,B,C,D,E,G,H,M,N 都是方格纸中的格点(即小正方形的顶 点) ,要使DEF 与ABC 相似,则点 F 应是 G,H,M,N 四点中的( ) AH 或 N BG 或 H CM 或 N DG 或 M 10 (3 分)如图,已知点 A(0,1) ,B(0,1) ,以点 A 为圆心,AB 为半径作圆,交 x 轴的正半轴于点 C,则BAC 等于( ) A90 B120 C60 D30 11 (3 分)等腰三角形边长分别为 a,b,2,且 a,b 是关于 x 的一元二次方程 x26x+n1 0 的两根,则 n 的值为 ( ) A9 B10 C9 或 10 D8 或 10 12 (3 分)

4、如图,直角边长为的等腰直角三角形与边长为 3 的等边三角形在同一水平线 上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为 t,两图形 重合部分的面积为 S,则 S 关于 t 的图象大致为( ) 第 3 页(共 22 页) A B  C D 二、填空题(本大题共二、填空题(本大题共 6 小题,每小题小题,每小题 3 分,共分,共 18 分)分) 13 (3 分)4 是   的算术平方根 14 (3 分)已知 a+b4,ab3,则 a2b2   15(3 分) 如图, 点 D 是线段 AB 的中点, 点 C 是线段 AD 的中点, 若 CD1, 则

5、 AB    16(3 分) 如图, A、 D 是O 上的两个点, BC 是直径, 若D40, 则OAC   度  17 (3 分)在平面直角坐标系的第一象限内,边长为 1 的正方形 ABCD 的边均平行于坐标 轴,A 点的坐标为(a,a) ,如图,若曲线 y(x0)与此正方形的边有交点,则 a 的取值范围是   18 (3 分)如图,在 RtABC 中,ABAC,D、E 是斜边 BC 上的两点,且DAE45, 将ADC 绕点 A 顺时针旋转 90后, 得到AFB, 连接 EF, 下列结论: EAF45; AEDAEF;ABEACD;BE2+D

6、C2DE2 其中正确的是   (填序号) 第 4 页(共 22 页) 三、解答题(本大题共三、解答题(本大题共 8 小题,共小题,共 66 分)分) 19 (6 分)计算: (2018)04sin45+2 1 20 (6 分)已知:不等式2+x (1)求不等式的解; (2)若实数 a 满足 a2,说明 a 是否是该不等式的解 21 (8 分)如图,在 RtABC 中,ACB90 (1)用尺规在边 BC 上求作一点 P,使 PAPB(不写作法,保留作图痕迹) ; (2)连接 AP,若 AP 平分CAB,求B 的度数 22 (8 分) “校园安全”受到全社会的广泛关注,某中学对部分学生就

7、校园安全知识的了解 程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整 的统计图,如图所示,请根据统计图中所提供的信息解答下列问题: (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形 的圆心角为   ; (2)请补全条形统计图; (3)若从对校园安全知识达到了“了解”程度的 3 个女生和 2 个男生中随机抽取 2 人参 第 5 页(共 22 页) 加校园安全知识竞赛,请用树状图或列表法求出恰好抽到 1 个男生和 1 个女生的概率 23 (8 分)如图,已知等边ABC,AB4,以 AB 为直径的半圆与 BC 边交于点 D,

8、过点 D 作 DEAC,垂足为 E,过点 E 作 EFAB,垂足为 F,连结 FD (1)求证:DE 是O 的切线; (2)求 EF 的长 24 (8 分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大, 店主决定将乙种水果降价 1 元促销, 降价后 30 元可购买乙种水果的斤数是原来购买乙种 水果斤数的 1.5 倍 (1)求降价后乙种水果的售价是多少元/斤? (2)根据销售情况,水果店用不多于 900 元的资金再次购进两种水果共 500 斤,甲种水 果进价为 2 元/斤,乙种水果进价为 1.5 元/斤,问至少购进乙种水果多少斤? 25 (10 分)如图,已知 ABCD 是

9、边长为 3 的正方形,点 P 在线段 BC 上,点 G 在线段 AD 上,PDPG,DFPG 于点 H,交 AB 于点 F,将线段 PG 绕点 P 逆时针旋转 90得到 线段 PE,连接 EF (1)求证:DFPG; (2)若 PC1,求四边形 PEFD 的面积 26 (12 分)如图,已知抛物线 yax2+bx+1 经过 A(1,0) ,B(1,1)两点 (1)求该抛物线的解析式; 第 6 页(共 22 页) (2)阅读理解: 在同一平面直角坐标系中,直线 l1:yk1x+b1(k1,b1为常数,且 k10) ,直线 l2:y k2x+b2(k2,b2为常数,且 k20) ,若 l1l2,则

10、 k1k21 解决问题: 若直线 y2x1 与直线 ymx+2 互相垂直,则 m 的值是   ; 抛物线上是否存在点 P, 使得PAB 是以 AB 为直角边的直角三角形?若存在, 请求出 点 P 的坐标;若不存在,请说明理由; (3)M 是抛物线上一动点,且在直线 AB 的上方(不与 A,B 重合) ,求点 M 到直线 AB 的距离的最大值 第 7 页(共 22 页) 2018 年广西玉林市北流市、陆川县、容县、博白县四县年广西玉林市北流市、陆川县、容县、博白县四县 市联考中考数学一模试卷市联考中考数学一模试卷 参考答案与试题解析参考答案与试题解析 一、选择题(本大题共一、选择题(本

11、大题共 12 小题,每小题小题,每小题 3 分,共分,共 36 分)分) 1 (3 分)下列各数中,最小的数是( ) A4 B3 C0 D2 【解答】解:根据有理数比较大小的方法,可得 4203, 各数中,最小的数是4 故选:A 2 (3 分)x1 是关于 x 的方程 2xa0 的解,则 a 的值是( ) A2 B2 C1 D1 【解答】解:将 x1 代入 2xa0 中, 2a0, a2 故选:B 3 (3 分)下列各图中,1 与2 互为邻补角的是( ) A B  C D 【解答】解:根据邻补角的定义可知:只有 D 图中的是邻补角,其它都不是 故选:D 4 (3 分)近似数 5.01

12、02精确到( ) A十分位 B个位 C十位 D百位 【解答】解:近似数 5.0102精确到十位 故选:C 第 8 页(共 22 页) 5 (3 分)计算的结果是( ) A1 B C D 【解答】解:1, 故选:A 6(3 分) 如图, 该图形经过折叠可以围成一个正方体, 折好以后与 “静” 字相对的字是 ( )  A着 B沉 C应 D冷 【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相 对,面“着”与面“静”相对, “冷”与面“应”相对 故选:A 7 (3 分)一组数据:1、2、2、3,若添加一个数据 2,则发生变化的统计量是( ) A平均数 B中位数 C

13、众数 D方差 【解答】解:A、原来数据的平均数是 2,添加数字 2 后平均数仍为 2,故 A 与要求不符;  B、原来数据的中位数是 2,添加数字 2 后中位数仍为 2,故 B 与要求不符; C、原来数据的众数是 2,添加数字 2 后众数仍为 2,故 C 与要求不符; D、原来数据的方差, 添加数字 2 后的方差,故方差发生了变化 故选:D 8 (3 分)下列命题是真命题的是( ) A如实数 a,b 满足 a2b2,则 ab  B若实数 a,b 满足 a0,b0,则 ab0  C “购买 1 张彩票就中奖”是不可能事件  D三角形的三个内角中最多有一个钝

14、角 【解答】解:如实数 a,b 满足 a2b2,则 ab,A 是假命题; 数 a,b 满足 a0,b0,则 ab0,B 是假命题; 若实“购买 1 张彩票就中奖”是随机事件,C 是假命题; 第 9 页(共 22 页) 三角形的三个内角中最多有一个钝角,D 是真命题; 故选:D 9 (3 分)如图,A,B,C,D,E,G,H,M,N 都是方格纸中的格点(即小正方形的顶 点) ,要使DEF 与ABC 相似,则点 F 应是 G,H,M,N 四点中的( ) AH 或 N BG 或 H CM 或 N DG 或 M 【解答】解:设小正方形的边长为 1,则ABC 的各边分别为 3、,只能 F 是 M 或 N

15、 时,其各边是 6、2,2与ABC 各边对应成比例,故选 C 10 (3 分)如图,已知点 A(0,1) ,B(0,1) ,以点 A 为圆心,AB 为半径作圆,交 x 轴的正半轴于点 C,则BAC 等于( ) A90 B120 C60 D30 【解答】解:A(0,1) ,B(0,1) , AB2,OA1, AC2, 在 RtAOC 中,cosBAC, BAC60, 故选:C 11 (3 分)等腰三角形边长分别为 a,b,2,且 a,b 是关于 x 的一元二次方程 x26x+n1 0 的两根,则 n 的值为 第 10 页(共 22 页) ( ) A9 B10 C9 或 10 D8 或 10 【解

16、答】解:三角形是等腰三角形, a2,或 b2,ab 两种情况, 当 a2,或 b2 时, a,b 是关于 x 的一元二次方程 x26x+n10 的两根, x2, 把 x2 代入 x26x+n10 得,2262+n10, 解得:n9, 当 n9,方程的两根是 2 和 4,而 2,4,2 不能组成三角形, 故 n9 不合题意, 当 ab 时,方程 x26x+n10 有两个相等的实数根, (6)24(n1)0 解得:n10, 故选:B 12 (3 分)如图,直角边长为的等腰直角三角形与边长为 3 的等边三角形在同一水平线 上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为 t,两图

17、形 重合部分的面积为 S,则 S 关于 t 的图象大致为( ) A B  C D 【解答】解:根据题意可得,等腰直角三角形斜边为 2,斜边上的高为 1,而等边三角形 的边长为 3,高为, 第 11 页(共 22 页) 故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全 处于等边三角形内部的情况, 故两图形重合部分的面积先增大,然后不变,再减小,S 关于 t 的图象的中间部分为水平 的线段,故 A,D 选项错误; 当 t0 时,S0,故 C 选项错误,B 选项正确; 故选:B 二二、填空题(本大题共、填空题(本大题共 6 小题,每小题小题,每小题 3 分,共分

18、,共 18 分)分) 13 (3 分)4 是 16 的算术平方根 【解答】解:4216, 4 是 16 的算术平方根 故答案为:16 14 (3 分)已知 a+b4,ab3,则 a2b2 12 【解答】解:a2b2(a+b) (ab)4312 故答案是:12 15(3 分) 如图, 点 D 是线段 AB 的中点, 点 C 是线段 AD 的中点, 若 CD1, 则 AB 4  【解答】解:点 C 是线段 AD 的中点,若 CD1, AD122, 点 D 是线段 AB 的中点, AB224 故答案为 4 16 (3 分)如图,A、D 是O 上的两个点,BC 是直径,若D40,则OAC 5

19、0 度 【解答】解:BC 是直径,D40, BD40,BAC90 第 12 页(共 22 页) OAOB, BAOB40, OACBACBAO904050 故答案为:50 17 (3 分)在平面直角坐标系的第一象限内,边长为 1 的正方形 ABCD 的边均平行于坐标 轴,A 点的坐标为(a,a) ,如图,若曲线 y(x0)与此正方形的边有交点,则 a 的取值范围是 a+1 【解答】解:A 点的坐标为(a,a) C(a1,a1) , 当 C 在双曲线 y时,则 a1, 解得 a+1; 当 A 在双曲线 y时,则 a, 解得 a, a 的取值范围是a+1 故答案为:a+1 18 (3 分)如图,在

20、 RtABC 中,ABAC,D、E 是斜边 BC 上的两点,且DAE45, 将ADC 绕点 A 顺时针旋转 90后, 得到AFB, 连接 EF, 下列结论: EAF45; AEDAEF;ABEACD;BE2+DC2DE2 其中正确的是 (填序号) 【解答】解:由旋转,可知:CADBAF 第 13 页(共 22 页) BAD90,DAE45, CAD+BAE45, BAF+BAEEAF45,结论正确; 由旋转,可知:ADAF 在AED 和AEF 中, AEDAEF(SAS) ,结论正确; 在ABEACD 中,只有 ABAC、ABEACD45两个条件, 无法证出ABEACD,结论错误; 由旋转,可

21、知:CDBF,ACDABF45, EBFABE+ABF90, BF2+BE2EF2 AEDAEF, EFDE, 又CDBF, BE2+DC2DE2,结论正确 故答案为: 三、解答题(本大题共三、解答题(本大题共 8 小题,共小题,共 66 分)分) 19 (6 分)计算: (2018)04sin45+2 1 【解答】解:原式14+2 12+2 20 (6 分)已知:不等式2+x (1)求不等式的解; (2)若实数 a 满足 a2,说明 a 是否是该不等式的解 【解答】解: (1)去分母得:2x3(2+x) , 去括号得:2x6+3x, 移项、合并同类项得:4x4, 第 14 页(共 22 页)

22、 系数化为 1 得:x1 (2)a2,不等式的解集为 x1,而 21, a 是不等式的解 21 (8 分)如图,在 RtABC 中,ACB90 (1)用尺规在边 BC 上求作一点 P,使 PAPB(不写作法,保留作图痕迹) ; (2)连接 AP,若 AP 平分CAB,求B 的度数 【解答】解: (1)如图:作线段 AB 的垂直平分线; (2)PD 是线段 AB 的垂直平分线, PAPB, BPAB, AP 平分CAB, CAPPAB, BPABCAP, ACB90, BPAB+CAP90, B30 22 (8 分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解 程度,

23、采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整 的统计图,如图所示,请根据统计图中所提供的信息解答下列问题: 第 15 页(共 22 页) (1)接受问卷调查的学生共有 60 人,扇形统计图中“基本了解”部分所对应扇形的 圆心角为 90 ; (2)请补全条形统计图; (3)若从对校园安全知识达到了“了解”程度的 3 个女生和 2 个男生中随机抽取 2 人参 加校园安全知识竞赛,请用树状图或列表法求出恰好抽到 1 个男生和 1 个女生的概率 【解答】解: (1)了解很少的有 30 人,占 50%, 接受问卷调查的学生共有:3050%60(人) 扇形统计图中“基本了解”部分

24、所对应扇形的圆心角为:36090 故答案为:60,90 (2)了解的人数有:601530105(人) ,补图如下: (3)画树状图得: 第 16 页(共 22 页) 共有 20 种等可能的结果,恰好抽到 1 个男生和 1 个女生的有 12 种情况, 恰好抽到 1 个男生和 1 个女生的概率为: 23 (8 分)如图,已知等边ABC,AB4,以 AB 为直径的半圆与 BC 边交于点 D,过点 D 作 DEAC,垂足为 E,过点 E 作 EFAB,垂足为 F,连结 FD (1)求证:DE 是O 的切线; (2)求 EF 的长 【解答】解: (1)连接 OD, ABC 是等边三角形, CAB60,

25、ODOB, ODB 是等边三角形, ODB60 ODBC, ODAC, DEAC ODDE, DE 是O 的切线 (2)ODAC,点 O 是 AB 的中点, OD 为ABC 的中位线, BDCD2 在 RtCDE 中, C60, CDE30, 第 17 页(共 22 页) CECD1 AEACCE413 在 RtAEF 中, A60, EFAEsinA3sin60 24 (8 分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大, 店主决定将乙种水果降价 1 元促销, 降价后 30 元可购买乙种水果的斤数是原来购买乙种 水果斤数的 1.5 倍 (1)求降价后乙种水果的售价是多

26、少元/斤? (2)根据销售情况,水果店用不多于 900 元的资金再次购进两种水果共 500 斤,甲种水 果进价为 2 元/斤,乙种水果进价为 1.5 元/斤,问至少购进乙种水果多少斤? 【解答】解: (1)设降价后乙种水果的售价是 x 元,根据题意可得: , 解得:x2,经检验 x2 是原方程的解, 答:降价后乙种水果的售价是 2 元/斤; (2)设至少购进乙种水果 y 斤,根据题意可得: 2(500y)+1.5y900, 解得:y200, 答:至少购进乙种水果 200 斤 25 (10 分)如图,已知 ABCD 是边长为 3 的正方形,点 P 在线段 BC 上,点 G 在线段 AD 上,PD

27、PG,DFPG 于点 H,交 AB 于点 F,将线段 PG 绕点 P 逆时针旋转 90得到 线段 PE,连接 EF (1)求证:DFPG; 第 18 页(共 22 页) (2)若 PC1,求四边形 PEFD 的面积 【解答】解: (1)证明:四边形 ABCD 为正方形, ADAB, 四边形 ABPM 为矩形, ABPM, ADPM, DFPG, DHG90, GDH+DGH90, MGP+MPG90, GDHMPG, 在ADF 和MPG 中, ADFMPG(ASA) , DFPG; (2)作 PMDG 于 M,如图, PDPG, MGMD, 四边形 ABCD 为矩形, PCDM 为矩形, PC

28、MD, DG2PC2; ADFMPG(ASA) , DFPG, 第 19 页(共 22 页) 而 PDPG, DFPD, 线段 PG 绕点 P 逆时针旋转 90得到线段 PE, EPG90,PEPG, PEPDDF, 而 DFPG, DFPE, 即 DFPE,且 DFPE, 四边形 PEFD 为平行四边形, 在 RtPCD 中,PC1,CD3, PD, DFPGPD, 四边形 CDMP 是矩形, PMCD3,MDPC1, PDPG,PMAD, MGMD1,DG2, GDHMPG,DHGPMG90, DHGPMG, , GH, PHPGGH, 四边形 PEFD 的面积DFPH8 第 20 页(共

29、 22 页) 26 (12 分)如图,已知抛物线 yax2+bx+1 经过 A(1,0) ,B(1,1)两点 (1)求该抛物线的解析式; (2)阅读理解: 在同一平面直角坐标系中,直线 l1:yk1x+b1(k1,b1为常数,且 k10) ,直线 l2:y k2x+b2(k2,b2为常数,且 k20) ,若 l1l2,则 k1k21 解决问题: 若直线 y2x1 与直线 ymx+2 互相垂直,则 m 的值是 ; 抛物线上是否存在点 P, 使得PAB 是以 AB 为直角边的直角三角形?若存在, 请求出 点 P 的坐标;若不存在,请说明理由; (3)M 是抛物线上一动点,且在直线 AB 的上方(不

30、与 A,B 重合) ,求点 M 到直线 AB 的距离的最大值 【解答】解: (1)将 A,B 点坐标代入,得 , 解得, 抛物线的解析式为 yx2+x+1; (2)由直线 y2x1 与直线 ymx+2 互相垂直,得 2m1, 即 m; 故答案为:; 第 21 页(共 22 页) AB 的解析式为 yx+, 当 PAAB 时,PA 的解析式为 y2x2, 联立 PA 与抛物线,得, 解得(舍) , 即 P(6,14) ; 当 PBAB 时,PB 的解析式为 y2x+3, 联立 PB 与抛物线,得, 解得(舍), 即 P(4,5) , 综上所述:PAB 是以 AB 为直角边的直角三角形,点 P 的坐标(6,14) (4,5) ; (3)如图: , M(t,t2+t+1) ,Q(t,t+) , MQt2+ SMABMQ|xBxA| (t2+)2 t2+, 当 t0 时,S 取最大值,即 M(0,1) 第 22 页(共 22 页) 由勾股定理,得 AB, 设 M 到 AB 的距离为 h,由三角形的面积,得 h 点 M 到直线 AB 的距离的最大值是

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 第一次模拟