初一数学寒假班讲义第06讲-整式的乘法与平方差公式(提高)-学案

上传人:hua****011 文档编号:126880 上传时间:2020-03-15 格式:DOC 页数:12 大小:214KB
下载 相关 举报
初一数学寒假班讲义第06讲-整式的乘法与平方差公式(提高)-学案_第1页
第1页 / 共12页
初一数学寒假班讲义第06讲-整式的乘法与平方差公式(提高)-学案_第2页
第2页 / 共12页
初一数学寒假班讲义第06讲-整式的乘法与平方差公式(提高)-学案_第3页
第3页 / 共12页
初一数学寒假班讲义第06讲-整式的乘法与平方差公式(提高)-学案_第4页
第4页 / 共12页
初一数学寒假班讲义第06讲-整式的乘法与平方差公式(提高)-学案_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、 学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题 第06讲-整式的乘法与平方差公式授课类型T同步课堂P实战演练S归纳总结教学目标 掌握整式的乘法法则,能够准确计算整式乘法的计算题; 理解平方差公式,了解平方差公式的几何背景,会灵活运用平方差公式进行计算。授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架二、知识概念 (一)整式的乘法 1、单项式与单项式相乘法则:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数保持不变,作为积的因式。 2、单项式与多项式相乘法则:根据分配律用单项式乘以多项式的每一项,再把所

2、得的积相加。公式如下: 都是单项式)3、多项式与多项式相乘法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。公式如下:都是单项式)(二)平方差公式1、平方差公式:,即两个数的和与这两个数的差的积,等于这两个数的平方差。公式的推导:。平方差公式的逆用即平方差公式的特点:(1)左边是两个二项式的积,在这两个二项式中,有一项(a)完全相同,另一项(b和-b)互为相反数。(2)右边是乘式中两项的平方差(相同项的平方减去符号相反项的平方)(3)公式中的a和b可以是具体数,也可以是单项式和多项式。 2、平方差公式的几何意义如图两幅图中,阴影部分的面积相等,第一个图的阴影部分的 面积是

3、:a2b2,第二个图形阴影部分的面积是:(a+b)(ab),则a2b2=(a+b)(ab) 平方差公式的几何意义还有很多,有兴趣的同学可以钻研一下。3、平方差公式的应用。平方差公式一般运用在化简求值,找规律简便计算中等。会涉及到平方差公式的逆用。典例分析 考点一:整式的乘法 例1、下列运算正确的是()A(x2)3+(x3)2=2x6 B(x2)3(x2)3=2x12Cx4(2x)2=2x6 D(2x)3(x)2=8x5例2、下列计算正确的是()A(2a)(3ab2a2b)=6a2b4a3b B(2ab2)(a2+2b21)=4a3b4C(abc)(3a2b2ab2)=3a3b22a2b3 D(

4、ab)2(3ab2c)=3a3b4a2b2c例3、若(am+1bn)(a2m1b2n)=a5b6(a、b均不等于1和0)则求m+n的值例4、 “三角”表示3abc,“方框”表示4xywz,则= 例5、计算:(1)(4ab3)(ab)(ab2)2 (2)(1.25108)(8105)(3103)(3)(x2yxy2y3)(4xy2) (4)anb23bn12abn+1+(1)2003 例6、若(x2+px)(x23x+q)的积中不含x项与x3项(1)求p、q的值;(2)求代数式(2p2q)2+(3pq)1+p2012q2014的值例7、已知代数式(mx2+2mx1)(xm+3nx+2)化简以后是

5、一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数考点二: 平方差公式例1、下列等式成立的是()A(a+4)(a4)=a24 B2a23a=a Ca6a3=a2 D(a2)3=a6例2、已知a=20162,b=20152017,则()Aa=b Bab Cab Dab例3、下列各式中不能用平方差公式计算的是()A(2a+b)(2ab) B(2a+b)(b2a)C(2a+b)(2ab)D(2ab) (2ab)例4、计算:(1)(x+2)(x2)(x2+4) (2)(2a+b)(2ab)4a(ab) (3) (4)4002399401 (5)(2x3y)(3y+2x)(4y3x)

6、(3x+4y) (6)(x+y)(x-y)+(2x+y)(2x-y)例5、若(N+2005)2=123456789,求(N+2015)(N+1995)的值例6、两个两位数的十位数字相同,一个数的个位数字是6,另一个数的个位数字是4,它们的平方差是220,求这两个两位数考点三:平方差公式的几何意义例1、乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是 (2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达)(4)运用你所得到的公式,计算:10.39.7 (x+2y3)(

7、x2y+3)例2、如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形,(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的代数式表示S1和S2;(2)请写出上述过程所揭示的乘法公式例3、如图,边长为a的大正方形是由边长为b的小正方形和四个全等的梯形拼成的,请利用此图证明平方差公式P(Practice-Oriented)实战演练实战演练 课堂狙击1、下列运算中,正确的是()A2x43x2=x2 B2x4+3x2=5x6 C2x43x2=6x8 D2x43x2=6x62、设(xm1yn+2)(x5my2)

8、=x5y3,则nm的值为 3、某同学在计算一个多项式乘以3x2时,因抄错运算符号,算成了加上3x2,得到的结果是x24x+1,那么正确的计算结果是多少?4、若(x2+ax+1)(ax3)的展开式中,不含有x4项,则3a1的值为 5、计算:(1) (4xy3)(xy)+(3xy2)2 (2) 3(3mn)2(3mn)3(n3m)(3) (4)(2x3y)(3xy24xy+1)(5)(3x2)(3x+2)6(x2+x1) (6)(2x24)(2x1x)6、当m、n为何值时,xx(x+m)+nx(x+1)+m的展开式中,不含有x2和x3的项?7、若(x2+nx+3)(x23x+m)的展开式中不含x2

9、和x3项,求m,n的值8、化简求值:已知:(x+a)(x)的结果中不含关于字母x的一次项,求(a+2)2(1a)(a1)的值9、如图(1)所示,边长为a的大正方形中有一个边长为b的小正方形,如图(2)是由图(1)中阴影部分拼成的一个长方形(1)请你分别表示出这两个图形中阴影部分的面积: 、 (2)请问以上结果可以验证哪个乘法公式? (3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1 课后反击1、下列各题,计算正确的是()A3a24a3=12a6 B(x3)2=x9C(3m3)3=9mx9 D(xn)2=x2n2、化简:3(xy)2(yx)3

10、(xy)43、通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A(ab)2=a22ab+b2 B(a+b)2=a2+2ab+b2C2a(a+b)=2a2+2ab D(a+b)(ab)=a2b24、计算:(1)(a2b)(b2a+) (2)6a3b(2ab2c)(3)2a2b(3ab2ab1) (4)(5a2a+1)(3a2) 5、某同学在计算一个多项式乘以2a时,因抄错运算符号,算成了加上2a,得到的结果是a2+2a1,那么正确的计算结果是多少?6、计算:(1)(2+1)(22+1)(24+1)(22n+1)+1(n是正整数)(2)(3+1)(32+1)(34+1)(3

11、2014+1)7、如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个相同长方形的两边长(xy),给出以下关系式: x+y=m; xy=n; xy= 其中正确的关系式的个数有()A0个 B1个 C2个 D3个直击中考 1、【2016 常州】先化简,再求值(x1)(x2)(x+1)2,其中x=2、【2015 珠海】计算3a2a3的结果为()A3a5 B3a6 C3a6 D3a53、【2015 佛山】若(x+2)(x1)=x2+mx+n,则m+n=()A1 B2 C1 D2S(Summary-Embedded)归纳总结重点回顾 1、幂的乘方的意义:幂的乘方指的是几个相同的幂相乘,如是3个相乘,读作a的五次幂的三次方,是n个相乘,读作a的m次幂的n次方。 2、幂的乘方的运算性质:都是正整数),就是说,幂的乘方,底数不变,指数相乘。幂的乘方的运算性质可推广为都是正整数)3、幂的乘方的运算性质的逆用:都是正整数)名师点拨 1、积的乘方的意义:积的乘方指底数是乘积形式的乘方,如等 2、积的乘方的运算性质:是正整数),就是说,积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘。积的乘方的运算性质可推广为是正整数)3、积的乘方的运算性质的逆用:是正整数)学霸经验 本节课我学到了 我需要努力的地方是 12

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 培训复习班资料 > 初一寒假班