1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-圆与圆的对称性 授课类型T同步课堂P实战演练S归纳总结教学目标 从不同角度深刻理解圆的定义; 理解并识记与圆相关的概念; 掌握点与圆的三种位置关系,及判定条件; 掌握圆的两种对称性; 理解圆的对称性,并掌握圆心角、弧、弦之间关系的定理及推论。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一) 圆的定义1、 描述定义在同一平面内,一条线段OP绕它固定的一个端点O旋转一周,另一个端点P所形成的图形叫做圆。定点O就是圆心,线段OP就是圆的
2、半径,以点O为圆心的圆记作,读作“圆O”。2、 集合定义平面上到定点的距离等于定长的所有点组成的图形叫做圆。其中,定点就是圆心,定长就是半径。(二) 与圆有关的概念1、 圆心(确定圆的位置);半径(确定圆的大小);直径;2、 圆弧、优弧、劣弧;3、 圆心角、弦、弦心距、弓形、弓形高;4、 同圆(同一个圆);等圆(半径相等的圆,圆心在不同位置);等弧(形状、大小均相等的弧)(三) 点与圆的位置关系设O的半径为r,点P到圆心的距离OP=d 1、点在圆内 d r; 2、点在圆上 d = r; 3、点在圆外 d r (四) 圆的对称性 1、圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称
3、轴;2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形(五)圆心角、弧、弦之间的关系1、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等2、推论:同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等三项中有一项成立,则其余对应的两项也成立考点一: 圆的定义例1、在平面直角坐标系中到原点的距离等于2的所有的点构成的图形是()A直线 B正方形 C圆 D菱形例2、某公园计划砌一个形状如图(1)的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,若两种方案砌各圆形水池的周边需用的材料费分别为W1和W2,则()AW1W2 BW1W2CW1=W2 D无法确定考点二
4、: 与圆有关的概念例1、下列说法正确的是()A长度相等的两条弧是等弧 B优弧一定大于劣弧C不同的圆中不可能有相等的弦 D直径是弦且同一个圆中最长的弦例2、下列说法正确的是()A半圆是弧,弧也是半圆 B过圆上任意一点只能做一条弦,且这条弦是直径C弦是直径 D直径是同一圆中最长的弦例3、如图,在ABC中,C=90,B=28,以C为圆心,CA为半径的圆交AB于点D,交BC于点E,则弧AD的度数为()A28 B34 C56 D62考点三: 点与圆的位置关系例1、O的半径为5,圆心O的坐标为(0,0),P的坐标为(4,2),则P与O的位置关系()A点P在O内 B点P的O上C点P在O外 D点P在O上或O外
5、例2、如图,某部队在灯塔A的周围进行爆破作业,A的周围3km内的水域为危险区域,有一渔船误入离A处2km的B处,为了尽快驶离危险区域,该船应沿哪条航线方向航行?为什么?考点四: 圆的对称性例1、下列结论错误的是()A圆是轴对称图形 B圆是中心对称图形C半圆不是弧 D同圆中,等弧所对的圆心角相等例2、将一张圆形纸片沿着它的一条直径翻折,直径两侧的部分相互重合,这说明()A圆是中心对称图形,圆心是它的对称中心 B圆是轴对称图形,直径所在的直线是它的对称轴C圆的直径相互平分 D垂直弦的直径平分弦所对的弧考点五:圆心角、弧、弦之间的关系例1、如图,在RtABC中,C=90,A=26,以点C为圆心,BC
6、为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为() A26 B64 C52 D128例2、已知:如图,在O中,弦ABCD求证:弧AC与弧BD是等弧P(Practice-Oriented)实战演练实战演练 课堂狙击1、若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是()A点A在圆外 B点A在圆上 C点A在圆内 D不能确定2、在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()AE、F、G BF、G、HCG、H、E DH、E、F3
7、、下列命题,其中正确的有()(1)长度相等的两条弧是等弧 (2)面积相等的两个圆是等圆(3)劣弧比优弧短 (4)菱形的四个顶点在同一个圆上A1个 B2个 C3个 D4个4、下列语句中正确的是()A一条弦把圆分为两条弧,这两条弧不可能是等弧 B平分弦的直径垂直于弦C长度相等的两条弧是等弧 D经过圆心的每条直线都是圆的对称轴5、如图,铁路MN和公路PQ在点O处交汇,QON=30,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A12秒 B16秒 C20秒 D24秒6、如图,AB
8、是O的直径,=,COD=35,求AOE的度数7、如图,AB、CD是O的弦,A=C求证:AB=CD 课后反击1、下列说法中,正确的是()A过圆心的线段是直径 B小于半圆的弧是优弧C弦是直径 D半圆是弧2、下列说法直径是弦 半圆是弧 弦是直径 弧是半圆,其中正确的有()A1个 B2个 C3个 D4个3、如图,O中点A、O、D以及点E、D、C分别在同一直线上,图中弦的条数为()A2 B3 C4 D54、一个圆的最长弦长为20cm,则此圆的直径为()A10cm B20cm C40cm D无法确定5、如图所示,MN为0的弦,M=40,MON则等于()A40 B60 C100 D1206、如图,从A地到B
9、地有两条路可走,一条路是大半圆,另一条路是4个小半圆有一天,一只猫和一只老鼠同时从A地到B地老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走假设猫和老鼠行走的速度相同,那么下列结论正确的是()A猫先到达B地 B老鼠先到达B地C猫和老鼠同时到达B地 D无法确定7、如图,A、B、C、D四点在同一个圆上下列判断正确的是()AC+D=180 B当E为圆心时,C=D=90C若E是AB的中点,则E一定是此圆的圆心 DCOD=2CAD8、如图,在RtABC中,ACB=90,点O是边AC上任意一点,以点O为圆心,以OC为半径作圆,则点B与O的位置关系()A点B在O外 B点B在O上C点
10、B在O内D与点O在边AC上的位置有关9、如图,AB是O的弦,半径OA2,AOB120,则弦AB的长是()A2B2CD310、在同圆中,若AB和CD都是劣弧,且AB=2CD,那么弦AB和CD的大小关系是()AAB=2CD BAB2CDCAB2CD D无法比较它们的大小11、一条弦将圆分成1:3两部分,则劣弧所对的圆心角为()A30 B60 C90 D12012、如图,已知点A、B、C、D在圆O上,AB=CD求证:AC=BD13、如图,AOB=90,C、D是的三等分点,AB分别交OC、OD于点E、F,求证:AE=CD直击中考1、【2009深圳】下面的图形中,既是轴对称图形又是中心对称图形的是( )
11、 A B C DxOyP图22、【2010深圳】如图2,点P(3a,a)是反比例函y(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的解析式为( )Ay By Cy Dy3、【2011深圳】下列命题是真命题的个数有( )垂直于半径的直线是圆的切线; 平分弦的直径垂直于弦;若是方程xay3的一个解,则a1; 若反比例函数的图像上有两点(,y1),(1,y2),则y1y2。 A1个 B2个 C3个 D4个 4、【2014贵港】如图,AB是O的直径,=,COD=34,则AEO的度数是()A51 B56 C68 D785、【2011深圳】如图,在O中,圆心角AOB=120,弦AB=cm,则OA= cm.【解析】2S(Summary-Embedded)归纳总结重点回顾1、 圆的定义2、 与圆有关的概念3、 圆的对称性4、 点与圆的位置关系5、 圆心角、弧、弦之间的关系名师点拨理解圆的对称性,掌握圆心角、弧、弦之间的关系是解决本节问题的关键。学霸经验 本节课我学到 我需要努力的地方是9